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Computer-aided drug-discovery techniques that account for
receptor flexibility
Jacob D Durrant1 and J Andrew McCammon2,3,4
Protein flexibility plays a critical role in ligand binding to both

orthosteric and allosteric sites. We here review some of the

computer-aided drug-design techniques currently used to

account for protein flexibility, ranging from methods that probe

local receptor flexibility in the region of the protein immediately

adjacent to the binding site, to those that account for general

flexibility in all protein regions.
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Introduction
Protein receptor flexibility plays an important role in

ligand binding. The lock-and-key model of binding, first

proposed by Emil Fischer in 1894 [1], provided much

insight; however, the assertion that a protein receptor

exists in a single conformational state that is perfectly

amenable to ligand binding without the need for confor-

mational rearrangement is demonstrably false. With the

advent of x-ray crystallography, comparisons between

bound and unbound protein–ligand complexes have

consistently demonstrated that proteins undergo a wide

range of motions upon ligand binding, from small

changes in binding-site residues to large-scale motions

of entire protein domains [2–4]. Indeed, in some cases

conformational rearrangement is so great that binding is

best seen as linked to protein refolding. NMR studies

capable of directly measuring protein motions have

further confirmed that these macromolecules are highly

dynamic.
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The lock-and-key model of ligand binding, while didac-

tically useful, was eventually supplanted by the induced-

fit model, first proposed by Koshland in 1958 [5]. This

model, which suggests that ligand binding itself induces

conformational changes in the protein receptor, is sup-

ported by much crystallographic data. Crystal structures

of bound protein–ligand complexes routinely demon-

strate that 70–100% of the ligand is buried in the protein

binding site, suggesting that binding-site residues ‘wrap

around’ the ligand after the initial binding event [6].

This crystallographic evidence aside, the induced-fit

model cannot explain all binding phenomena. In the late

1990s, researchers began to envision a population-based

mechanism of ligand binding [7–10]. The protein receptor

is thought to fluctuate between multiple conformational

states, even in the unbound state. The frequency with

which these various states are occupied is governed by their

relative free energies according to the Boltzmann factor.

Only a certain subset of these conformations is amenable to

ligand binding. When a ligand binds to an amenable

conformation, the binding energy stabilizes that confor-

mation, making it more energetically favorable, and the

population of all conformations consequently shifts. The

population-shift model easily explains why some proteins

can be activated or deactivated, depending on the bound

ligand. If the bound ligand is an agonist, it probably

stabilizes an active conformation; if it is an antagonist, it

probably stabilizes a less active conformation.

The induced-fit and population-shift theories of ligand

binding are not mutually exclusive. To varying degrees, it

is likely that both effects contribute to ligand binding

[11]. A ligand in solution encounters a highly dynamic

protein that fluctuates between multiple, low-energy

states. After initial binding, the ligand stabilizes a certain

subpopulation of those states. Following binding, smaller

induced-fit conformational changes may occur that

further optimize protein–ligand interactions.

With the development of these theories, the critical role

that protein flexibility plays in ligand binding has become

apparent. Medicinal chemists engaged in computer-aided

drug design (CADD) must account for this flexibility if

they wish to successfully identify small-molecule ligands

in silico. Traditionally, a single static protein structure has

been used in CADD projects. While this single structure

may perchance be amenable to the binding of some

ligands, the assumption that a single structure can accom-

modate all true ligands is equivalent to the acceptance of

the now antiquated lock-and-key model of binding.
www.sciencedirect.com
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Recognizing the weaknesses of methods that fail to

account for protein flexibility, computational chemists

have envisioned several ways of incorporating receptor

flexibility into their methodologies [6,12–15]. For example,

in 2004 Schames et al. used a molecular dynamics simu-

lation to identify a novel, cryptic binding trench in HIV

integrase that was not evident in any of the crystal struc-

tures [16]. This flexible trench was subsequently exploited

pharmacologically, leading to the development of ralte-

gravir (Isentress), approved by the FDA in 2007. A very

recent computational study of the raltegravir–integrase

complex, with a detailed treatment of the key divalent

metal ions, confirmed that the breathing motions of the

trench allow for orientationally distinct binding poses [17].

A similar study recently described the identification of a

novel cryptic binding pocket adjacent to the enzymatic site

of cruzain, the main cysteine protease of Trypanosoma cruzi.
Future studies may identify novel antichagastic thera-

peutics that exploit this cryptic pocket as well [18].

We here review some of the CADD techniques currently

used to account for protein receptor flexibility, ranging

from methods that probe local receptor flexibility in the

region of the protein immediately adjacent to the binding

site, to those that account for general flexibility in all

protein regions.

Methods that probe local receptor flexibility
A number of methods have been developed that account

for the flexibility of those residues immediately adjacent

to the ligand-binding site. These methods range from

those that are merely forgiving of steric clashes, essen-

tially ‘soft lock and key’ methods, to those that allow for

local side-chain and backbone movements [19,20].

‘Soft docking’ was one of the earliest methods developed

to account for protein flexibility [21]. Most force-field

scoring functions use the Lennard-Jones potential to

approximate the van der Waals force. This potential

increases rapidly to infinity as the interatomic distance

approaches zero; consequently, even minor steric clashes

carry enormous energy penalties. If a true ligand does not

fit perfectly into a static model of the protein binding site,

it may be mistakenly rejected as a candidate binder.

In soft docking, the Lennard-Jones potential is replaced

by a more forgiving function that does not approach

infinity as the interatomic distance approaches zero. Con-

sequently, candidate inhibitors need not fit perfectly into

the target binding site; rather, some minor steric clashes

are tolerated, as if protein atoms were allowed to flexibly

distance themselves from the ligand upon binding. This

faux flexibility is clearly limited, however; large protein

rearrangements are not permitted.

To account for greater protein flexibility, methods based

on rotamer libraries have been used [22–24]. The rota-
www.sciencedirect.com
table bonds of binding-site residues are first identified,

and libraries of discrete rotameric states are generated for

each by systematically rotating around these bonds. The

rotameric states most amenable to ligand binding are then

identified. Rotamer libraries can range from simple, con-

taining only the rotamers of hydrogen-bond donors, to

more complex, allowing for full side-chain rotation.

Energy refinement techniques further account for flexi-

bility by allowing a full spectrum of backbone and/or side-

chain motions, as opposed to discrete side-chain rotamers

only [25–27]. Following docking, geometry relaxation

procedures optimize the position of the ligand and/or

protein atoms. This local energy minimization is thought

to simulate the protein motions of an induced-fit effect.

However, while successful in some cases, the energy

minimum closest to the initial docked pose is not always

the global optimum, weaknesses in force fields aside.

Methods that probe global flexibility
A number of global methodologies have been developed

to overcome the limitations of methods that probe only

local receptor flexibility [28��,29]. Rather than consider-

ing a single protein structure or conformation, methods

that account for global receptor flexibility typically rely on

multiple, conformationally diverse structures. These

multiple structures can be derived experimentally from

x-ray crystallography or NMR [30�,31–34], or computa-

tionally from Monte Carlo or molecular dynamics simu-

lations [31–36].

Computational methods like molecular dynamics simu-

lations are particularly appealing because they generate a

full continuum of structures. However, as they are typi-

cally limited to at most the low-microsecond timescale,

there is some concern that they may not sample all

possible conformations. Recent efforts have focused on

modifying the underlying free-energy profiles of molecu-

lar dynamics simulations in order to facilitate transitions

between protein conformations that might otherwise be

energetically unfavorable. These so-called accelerated

molecular dynamics simulations address concerns about

inadequate conformational sampling and may prove use-

ful in future drug-design efforts [37,38].

Hybrid experimental/computational approaches for gen-

erating multiple structures have also been envisioned.

For example, one algorithm, FlexE, compares multiple

experimental structures. Those regions that do not vary

among the multiple structures are considered rigid and

are simply averaged. Those regions that do differ are

considered flexible. Composite protein conformations are

generated by mixing and matching the flexible regions

from various experimental structures while maintaining

the average structure of rigid regions, thus producing

novel structures that may be pharmacologically relevant

[39].
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Several protocols have been developed that incorporate

binding information gleaned from multiple structures,

whatever their source, into existing docking and pharma-

cophore methodologies. In the relaxed complex scheme,

candidate ligands are docked into multiple structures so

that each compound is associated with a whole spectrum

of binding scores, rather than a single score from docking

into a single structure. The ligands are then ranked

by different properties of this docking-score spectrum

(e.g., the ensemble-average or ensemble-best score)

[28��,31,40�,41,42�]. Aside from accounting for protein

flexibility, this method has the advantage of relying not

on one docking score, with its associated inaccuracies, but

rather on multiple docking scores.

A second method generates a single composite energy

grid by averaging grids calculated for multiple structures.

Candidate ligands are then docked into this ensemble-

average energy grid [43,44]. However, we note that true

ligands may not bind to an average structure; they may

instead bind to and stabilize rare protein conformations

that differ substantially from the average. Additionally,

the average-grid methodology relies on a single docking

score, rather than on a consensus of multiple scores. As

docking scores are notoriously inaccurate, reliance on a

single score may be ill advised.

A third method used to predict ligand binding from

multiple structures is called the dynamic pharmacophore.

Multiple protein conformations, typically extracted from a

molecular dynamics simulation, are characterized accord-

ing to their active-site binding regions (i.e. regions that

could potentially contribute to ligand binding through

hydrogen bonds, aliphatic contacts, etc.). A composite

pharmacophore model based on these many characteriz-

ations is then generated, and ligand databases are searched

for compounds with complementary chemical features

[12,15,34].

Finally, normal mode analysis has also been used to

incorporate protein flexibility into computer-aided

ligand-identification protocols. Low-frequency normal

modes representing large-scale protein dynamics are first

identified, typically from a molecular dynamics simu-

lation. Simple parameters, included as variables in the

docking algorithm, specify the extent to which the

protein is deformed along these normal modes during

the docking process [45,46,47�,48–50].

Emerging methods
Several new methods for predicting and scoring ligand

binding have been recently developed. Among these,

metadynamics, a method for exploring entire free-energy

landscapes, is particularly notable. A molecular dynamics

simulation of the ligand and the protein is performed.

After having sampled a given region of the free-energy

profile sufficiently, a Gaussian repulsive potential is
Current Opinion in Pharmacology 2010, 10:770–774
placed in that region, thereby biasing the simulation

towards new free-energy regions in a history-dependent

manner. When the simulation is completed, the free-

energy profile of the system can be reconstructed from

the sum of the added Gaussians, thus allowing the identi-

fication of both the best docked pose at the free-energy

minimum as well as the free energy of binding itself.

Additionally, the general topography of the free-energy

surface can provide insights into the binding mechanism

[51]. If metavariables like those used in traditional dock-

ing algorithms (translation, rotation, and ligand confor-

mation) are employed, a thorough exploration of the

variable space is computationally intractable. However,

if the molecular dynamics simulation is allowed to ‘equi-

librate the fast degrees of freedom,’ fewer, more general

metavariables can be chosen [51].

A second method called four-dimensional docking is also

notable [52�,53]. Like the relaxed complex scheme, four-

dimensional docking employs multiple protein confor-

mations. Rather than performing a complete docking into

each structure, however, the structure used is deter-

mined during the docking process itself, as one of the

variables in the docking algorithm. This method, while

less computationally demanding than the relaxed com-

plex scheme, still maintains the advantages of multiple-

receptor docking.

Conclusion
Here in, we enumerate the important roles that protein

flexibility plays in ligand binding and describe several

computational methods designed to account for receptor

flexibility. Only a few years ago, computational chemists

performing virtual screens routinely ignored ligand flexi-

bility, though accounting for such flexibility is almost a

universal feature of all modern docking algorithms. In the

near future, accounting for full protein receptor flexibility,

though far more computationally demanding, may like-

wise become routine, leading to significantly improved

computer-aided identification of small-molecule ligands.
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