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The design of an ideal scoring function for protein-protein docking that would also predict the binding
affinity of a complex is one of the challenges in structural proteomics. Such a scoring function would
open the route to in silico, large-scale annotation and prediction of complete interactomes. Here we
present a protein-protein binding affinity benchmark consisting of binding constants (Kd’s) for 81
complexes. This benchmark was used to assess the performance of nine commonly used scoring
algorithms along with a free-energy prediction algorithm in their ability to predicting binding affinities.
Our results reveal a poor correlation between binding affinity and scores for all algorithms tested.
However, the diversity and validity of the benchmark is highlighted when binding affinity data are
categorized according to the methodology by which they were determined. By further classifying the
complexes into low, medium and high affinity groups, significant correlations emerge, some of which
are retained after dividing the data into more classes, showing the robustness of these correlations.
Despite this, accurate prediction of binding affinity remains outside our reach due to the large associated
standard deviations of the average score within each group. All the above-mentioned observations
indicate that improvements of existing scoring functions or design of new consensus tools will be
required for accurate prediction of the binding affinity of a given protein-protein complex. The
benchmark developed in this work will serve as an indispensable source to reach this goal.
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Introduction
Understanding protein-protein interactions is crucial step

in the investigation of intracellular signaling pathways,1

antibody-antigen pairing,2 and enzyme-inhibitor interac-
tions.3 Although current structural biology tools have broaden
our knowledge in single protein structure, function and dy-
namics,4 the situation differs substantially in the case of
protein-protein complexes: Due to experimental limitations
in probing protein-protein interactions5 and solving the
structure of biomolecular complexes,6 complementary com-
putational approaches are often needed to assist experimental-
ists in investigating how two proteins of known structure
interact and form a three-dimensional (3D) complex. Pro-
tein-protein docking algorithms have been developed for this
purpose. They use geometric, steric and energetic consider-
ations to predict the atomic structure of a complex.7 Every
docking program incorporates two key parts:8 The search
algorithm that samples configurational and conformational
degrees of freedom and the scoring function that ranks the
solutions. Even if docking methods are highly promising tools
for the modeling of multiprotein complexes,9,10 they do not

(yet) allow a reliable estimation of the binding affinity of the
complex.11 For protein-protein complexes, affinity can be
described by dissociation equilibrium constants (Kd’s) that span
10 orders of magnitude (10-14 > Kd > 10-5). These values
correspond to Gibbs free-energy changes upon binding (∆Gθ

) -RT ln Kd) in between 7 and 20 kcal/mol.

What if these algorithms were able to predict the binding
affinity of a macromolecular complex? Such a development
would provide a quantitative description of the actual interac-
tions among complexes. Interactomes obtained from high-
throughput experimental methods could be cleaned up by
removing false positive pairs based on computational binding
affinity predictions, and even in silico interactome prediction
might come within reach. Furthermore, coupling the prediction
of structure, dynamics and binding affinity of protein-protein
complexes would permit a time-scale simulation of the system,
highlighting systemic/network features.12

Over the years, much effort has been placed in predicting
the binding affinity of biomolecular complexes: Sophisticated
approaches for estimating free-energy contributions have been
reported13-17 including Monte Carlo Conformational
searches,13 free-energy perturbations,14 Poisson-Boltzmann,15

generalized-Born solvation,16 and atomic continuum electro-
static calculations.17 All these methods are however compu-
tationally demanding and cannot be used for free-energy
screening and binding affinity prediction in the context of
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protein-protein docking where thousands of models might
need to be evaluated. Alternative, simplified methods that
mostly relate to changes in the solvent accessible surface area
upon binding have been proposed instead.18-21 Some of these
proved not to be ubiquitously applicable,22,23 whereas most of
them have not yet been thoroughly validated.12,21 Some
promising new methods have been published21 that show very
good results despite a limited training set (up to 24 protein-
protein and protein-peptide complexes with known Kd values).

Scoring functions used in docking have been also proposed
for binding affinity prediction.24-27 However, again, these have
not yet been tested against a large number of complexes with
known binding affinity, basically due to the absence of such a
data set. In 2008, the protein-protein docking benchmark 3.0
was published.28 It includes experimentally determined struc-
tures in both their bound and unbound form for 124 com-
plexes. This benchmark is widely used for development and
testing of docking algorithms.29-35 It does not, however, include
any binding affinity data. A benchmark including such values
would be an indispensable tool for evaluating current pro-
tein-protein scoring functions, and would offer a common
ground for the development and optimization of algorithms
for the prediction of binding affinities.

We present here a novel Binding Affinity Benchmark that
includes Kd constants of 81 protein complexes together with
the method used to determine them. The performance of nine
commonly used scoring functions and one very fast free-energy
prediction algorithm for protein-protein complexes are tested
against this benchmark for their ability (or lack of) to predict
binding affinities of protein-protein complexes.

Materials and Methods

Data Set. The Protein-Protein Docking Benchmark 3.028 was
used as a data set for this work. Literature searches were
performed in order to find the experimentally determined Kd’s
of the complexes. Kd’s could be found for 81 out of 124
complexes. Other biochemical data that relate to the binding
affinity were also collected such as pH, temperature, and the
experimental method used to measure the Kd’s.

Optimization of the Experimentally Determined 3D-
Structures of the Protein-Protein Complexes. All 81 com-
plexes (bound form) were optimized using the HADDOCK Web
server (http://haddock.chem.uu.nl). HADDOCK is a high-
performing docking approach36 that uses a search algorithm
in which experimental data can be incorporated and drive the
docking procedure.37 The server was however not used for
docking of the bound forms of the molecules, but only to refine
the given complex and consequently calculate the HADDOCK
score. The complexes were optimized either by energy mini-
mization or by a gentle molecular dynamics refinement, both
in explicit solvent. Detailed methodology can be found in the
Supporting Information. To check for a potential bias intro-
duced by the energy minimization within HADDOCK, scoring
of the original crystal structures was also performed without
further optimization.

Scoring. The scores and their components were calculated
for each complex (original, energy minimized and water-
refined) with ATTRACT,38 DFIRE,39 FASTCONTACT,40

FIREDOCK,41 HADDOCK,36 PISA,42 PYDOCK,43 ROSETTA-
DOCK27 and ZRANK.44

Affinity prediction was performed with AFFINITY-
SCORE1.0.21 The free-energy predictor was kindly provided by
CMD Bioscience (http://www.cmdbioscience.com). The pro-

gram uses a seven-term linear regression model, calculating
total number of solvent exposed charged (a) and hydrophobic
(b) atoms, number of hydrogen bonds (c), net number of short-
range (e4 Å) charge-charge or salt bridge interactions across
the protein-protein interface (d), interface gap or void volume
(e), change in the number of solvent exposed side-chain
torsions or the total number of side chain torsions buried at
the interface (f) and a constant contribution (g), giving them a
corresponding weight.

The HADDOCK score is a consensus term that includes van
der Waals and Electrostatic interactions and a Desolvation term.
These values are weighted and combined into the HADDOCK
score. The latter was obtained from the HADDOCK Web server
(see above).

PYDOCK also uses a weighted score, including energy terms
similar to HADDOCK (van der Waals, electrostatics interactions
and desolvation energy); the weighting of the terms is, however,
different.

The ATTRACT score is a consensus term of van der Waals
interactions and Electrostatics calculated using a coarse-grained
model of the protein-protein complex.

PISA analyses and predicts structural and chemical proper-
ties of macromolecular interfaces, as well as their probable
dissociation pattern. Theoretical values that describe energy
terms (for example, free energy of dissociation) are also
calculated. The scores were obtained from the PISA server at
http://www.ebi.ac.uk/msd-srv/prot_int/.

FIREDOCK rescores rigid-body protein-protein docking
solutions. The refinement is restricted to interface side-chain
rearrangement and to soft rigid-body optimization. The score
includes Atomic Contact Energy, softened van der Waals
interactions, partial electrostatics and additional estimations
of the binding free energy. They were obtained from the
FIREDOCK server at http://bioinfo3d.cs.tau.ac.il/FireDock/. All
parameters were set as default, except that both proteins were
treated as bound molecules.

FASTCONTACT rapidly estimates contact and binding free
energies for protein-protein complexes. It is based on a
statistically determined desolvation contact potential and
Coulomb electrostatics with a distance-dependent dielectric
contact. The scores were obtained from the FASTCONTACT
server at http://structure.pitt.edu/servers/fastcontact/.

DFIRE uses an all-atom knowledge-based potential and
provides accurate predictions as far as the stability of the
complexes is concerned. Scores were obtained using the DFIRE
Web server at http://sparks.informatics.iupui.edu/hzhou/dfire.
html.

ZRANK is a high-performing scoring function that combines
detailed electrostatics, van der Waals, and desolvation terms
to calculate the energy of a complex. The scores were obtained
by running the local version of the software.

Finally, a local version of ROSETTA (ROSETTA v2.1.2) was
used to calculate the energy of each complex. Binding energies
(ROSETTA score) were calculated by subtracting the energy of
the complex from the energies of the individual chains. The
I_int ROSETTA score is the component in the scoring function
of the ROSETTADOCK algorithm that calculates a score for the
interface in a given complex.

Statistical Treatment of the Derived Data. To find if there
is a linear correlation between binding affinities and the various
scores and their component, the Pearson product-moment
correlation coefficient was calculated. It gives a parametric
measure of correlation and assesses how well an arbitrary
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monotonic function describes the relationship between two
variables, without any assumptions about their frequency
distribution. This correlation coefficient is obtained by dividing
the covariance of the two variables by the product of their
standard deviations. It has already been used successfully in
protein-ligand docking for the assessment of the relationship
between scoring functions and the binding affinity.45-49 The
coefficient ranges from -1 to 1: A value of 1 suggests that a
linear correlation describes the relationship perfectly and
positively; a value of 0 shows that there is no correlation
between the two variables and a value of -1 describes a perfect,
but negative, linear correlation (anticorrelation). The square
of the Pearson product-moment correlation coefficient is used
as a measure of the association between the two variables: for
example, if r2 ) 0.70, then 70% of the variance of one variable
can be explained by changes in the other variable and the linear
relationship between them. Pearson product-momentum cor-
relation coefficient and p-values were determined for each data
set.

Results

The Protein-Protein Binding Affinity Benchmark. We have
compiled a protein-protein binding affinity benchmark that
includes the experimentally characterized dissociation con-
stants (Kd) of 81 protein-protein complexes along with the
method used to determine them (Table 1). It also includes the
experimental conditions (pH and temperature) at which
the Kd values were measured. Within this benchmark, the
Chymotrypsin-Ecotin protein-inhibitor complex has the high-
est affinity with a value of 4.4 × 10-15 M as determined by
stopped-flow fluorimetry at 25 °C and 7.0 pH.50 The lowest
binding affinity complex (Kd < 6.5 × 10-4 M) is the one formed
by the UEV domain and Ubiquitin as determined by surface
plasmon resonance at 20 °C and 7.2 pH.51 The reported
affinities cover an extremely broad range of about 11 orders of
magnitude. We further classified the complexes based on their
binding affinity into three groups: high (Kd e 10-9 M), medium
(10-9 M < Kd e 10-6 M), and low (Kd > 10-6 M) binding affinity
complexes.

Scoring of the Original Crystal Structures To Check for
Bias in the Refinement Procedure. Scoring of the initial crystal
structures was performed in order to check for a potential bias
in our results introduced by the energy minimization and force
field used in HADDOCK. The crystal structures of the pro-
tein-protein binding affinity benchmark were scored directly,
without any optimization and plotted against the affinity data
(Supporting Information, Figure 1s, A). The resulting scores
were compared directly to those of the minimized and the
water-refined structures (Supporting Information, Figure 1s, B).
These results indicate that the scoring functions tested in this
study are not substantially affected by the treatment of the
initial input structures. Scores calculated by ATTRACT, DFIRE,
FASTCONTACT, FIREDOCK, PYDOCK and ROSETTADOCK use
built-in structure refinement protocols and, thus, are the result
of a reoptimization of the input structures. Very few structures
have significantly different scores. PISA and AFFINITYSCORE1.0
use descriptors that do not change significantly during refine-
ment (e.g., buried surface area, gap volume, total number of
solvent exposed charged and hydrophobic atoms, etc.). When
the complexes are optimized, an improvement in the correla-
tion of affinities to AFFINITYSCORE1.0 is observed (Supporting
Information, Table 1s, Compare Figure 1 to Supporting Infor-
mation, Figures 1s and 2s). The various scores (original,

minimized, water-refined) show a very strong linear depen-
dence (Supporting Information, Figure 1s). ZRANK was the only
algorithm that showed a minor dependence on the treatment
of the crystal structures (∼20% of the structures were calculated
to have different ZRANK score, shown in Supporting Informa-
tion Figure 1s), but the correlations to the experimentally
determined binding affinities was not significantly altered
(Supporting Infomation Table 1s).

Performance of Scoring Functions: Poor Correlation
with the Experimental Kd’s. We have tested nine scoring
functions implemented in well established docking programs
or Web servers for their ability to correlate with the experi-
mental binding affinities; these include ATTRACT,38 DFIRE,39

FASTCONTACT,40 FIREDOCK,41 HADDOCK,36 PISA,42 PY-
DOCK,43 ROSETTADOCK27 and ZRANK.44 AFFINITY-
SCORE1.0,21 a binding affinity prediction algorithm for pro-
tein-protein complexes, was also tested. All complexes were
treated in a similar way to build missing atoms and remove
possible clashes. They were either energy minimized or sub-
jected to a gentle refinement in explicit water using the
HADDOCK Web server (http://haddock.chem.uu.nl) (see Ma-
terial and Methods).

All scoring algorithms failed to correlate the value of the
binding affinity (pKd) to the score that was calculated for each
complex by the corresponding scoring function, both for water-
refined (Figure 1) and energy minimized only complexes
(Supporting Information, Figure 2s). All calculated r values are
between -0.32 and 0.18. The highest correlation (r ) -0.32)
was obtained with FIREDOCK for the water refined complexes
(Figure 1G). This correlation is, however, still low and has very
limited predictive power. In general, all scoring functions poorly
correlate to the binding affinity and the corresponding r values
do not considerably change when complexes are refined in
water (Figure 1 and Supporting Information, Figure 1s), except
for AFFINITYSCORE1.0, HADDOCK and FASTCONTACT that
show somewhat better (but still low) correlations after water
refinement.

When the components of each scoring function are analyzed
for their correlation to binding affinity (Supporting Information,
Tables 2s and 3s), interesting observations can be made: the
correlation for the hydrogen bonding function of FIREDOCK
reaches almost -0.33 for the energy-minimized complexes
(Supporting Information, Figure 2s) (one of the highest values
among all analyzed components). After water refinement, this
value drops to -0.28. The water refinement apparently rear-
ranges the hydrogen bonding network of the molecules at the
interface. An increased correlation after water refinement is
detected for the van der Waals component of HADDOCK (from
r ) -0.22 to r ) -0.33). Similar increases are observed for the
FIREDOCK and ROSETTADOCK attractive van der Waals
interactions (Supporting Information, Tables 2s and 3s).

Only few of the various score components (Supporting
Information, Tables 2s and 3s) show statistically significant r
values: The HADDOCK van der Waals potential reaches a
p-value of 0.0027 for the water-refined complexes (r ) -0.32);
the hydrogen bonding term of FIREDOCK reaches p-values of
0.0029 (r ) -0.33) and 0.0125 (r ) -0.28), for the complexes
that were minimized and refined in water, respectively, and
some knowledge-based components of the ROSETTADOCK
score describing secondary structure energy terms exhibit
significant p-values (e.g., 0.001 for the backbone-backbone
hydrogen bond term (r ) -0.36)) (Supporting Information,
Tables 2s and 3s).
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Table 1. The Binding Affinity Benchmark Including Kd Values for 81 Protein-Protein Complexes

PDB ID
(complex) protein 1 (receptor) protein 2 (ligand)

Kd

(mol/L)a pKd

∆Gθb

(kcal/mol) methodc pH T(oC)

1 1N8O_ABC:E Chymotrypsin Ecotin 4.4 × 10-15 14.36 -19.57 aFRET 8.0 25
2 7CEI_A:B Colicin E7 nuclease Im7 immunity protein 5.0 × 10-15 14.30 -19.50 f 7.0 25
3 1DFJ_E:I Ribonuclease A Rnase inhibitor 5.9 × 10-14 13.23 -18.04 b 6.0 25
4 1AVX_A:B Porcine trypsin Soybean trypsin inhibitor (Kunitz) 6 × 10-14 13.22 -18.03 c 8.0 25
5 1AY7_A:B Barnase Barstar 6 × 10-14 13.22 -18.03 a 8.0 25
6 1BVN_P:T R-amylase Tendamistat 9 × 10-12 11.05 -15.06 d 7.0 25
7 1IQD_AB:C Fab Factor VIII domain C2 1.4 × 10-11 10.85 -14.80 d 5.0 25
8 1CGI_E:I Chymothripsinogen A PSTI3 1.6 × 10-11 10.80 -14.72 e 8.0 25
9 1MAH_A:F Acetylcholinesterase Fasciculin 2 2.5 × 10-11 10.60 -14.45 c 7.5 25

10 1XQS_A:C HspBP1 Hsp70 ATPase domain 4.0 × 10-11 10.40 -14.18 f 7.2 25
11 1EZU_C:AB D102N Trypsin Y69F D70P Ecotin 8.0 × 10-11 10.10 -13.77 e 8.0 25
12 1JPS_HL:T Fab D3H44 Tissue factor 1.0 × 10-10 10.00 -13.63 d 7.4 25
13 1PPE_E:I Bovine trypsin CMTI-1 squash inhibitor 1.0 × 10-10 10.00 -13.50 g 8.3 22
14 1IBR_A:B Ran GTPase Importin � 3.0 × 10-10 9.52 -12.98 c 7.4 25
15 1R0R_A:C Subtilisin Carlsberg OMTKY 3.4 × 10-10 9.47 -12.74 f 8.3 21
16 1T6B_X:Y Anthrax protective antigen Anthrax toxin receptor 4.0 × 10-10 9.40 -12.81 d 7.4 25
17 1KXP_A:D Actin Vitamin D binding protein 1.0 × 10-9 9.0 -12.27 c 7.5 25
18 2FD6_HL:U Urokinase Plasminogen

receptor antibody
Urokinase Plasminogen

activator receptor
1.0 × 10-9 9.0 -12.19 c 7.4 23

19 2I25_N:L Shark single domain
antigen receptor

Lysozyme 1.0 × 10-9 9.0 -12.27 d 7.4 25

20 2VIS_AB:C Fab Flu virus hemagglutinin 1.0 × 10-9 9.0 -12.27 d 7.4 25
21 1BGX_HL:T Fab Taq polymerase 1.0 × 10-9 9.0 -12.27 d 7.4 25
22 2B42_A:B Xylanase Xylanase inhibitor 1.07 × 10-9 8.97 -12.11 d 5.0 22
23 1EAW_A:B Matripase BPTI 1.7 × 10-9 8.77 -11.96 e 7.5 25
24 2JEL_HL:P Fab Jel42 HPr 2.8 × 10-9 8.55 -11.58 aPolarization 7.2 23
25 1ML0_AB:D Viral chemokine binding protein M3 Chemokine Mcp1 3.0 × 10-9 8.52 -11.62 d 7.4 25
26 1KKL_ABC:H HPr kinase C-ter domain HPr 3.1 × 10-9 8.51 -11.60 d 8.0 25
27 1BKD_R:S Ras GTPase Son of Sevenless 3.3 × 10-9 8.48 -11.56 d 7.4 25
28 1BJ1_HL:VW Fab vEGF 3.4 × 10-9 8.47 -11.55 d 7.4 25
29 1KXQ_H:A Camel VHH Pancreatic R-amylase 3.5 × 10-9 8.46 -11.53 dIAsys 7.4 25
30 1EWY_A:C Ferredoxin reductase Ferredoxin 3.57 × 10-9 8.45 -11.52 a 8.0 25
31 1KAC_A:B Adenovirus fiber knob protein Adenovirus receptor 4.75 × 10-9 8.32 -11.35 d 7.4 25
32 1OPH_A:B R-1-antitrypsin Trypsinogen 5 × 10-9 8.30 -11.32 aFRET 7.4 25
33 1M10_A:B Von Willebrand Factor Domain A1 Glycoprotein IB-R 5.8 × 10-9 8.24 -11.23 d 7.4 25
34 1Y64_A:B Actin BN1 protein 8.1 × 10-9 8.09 -11.03 a 7.0 25
35 1TMQ_A:B R-amylase RAGI inhibitor 1.1 × 10-8 7.96 -10.85 e 8.0 25
36 2AJF_A:E ACE2 SARS spike protein receptor

binding domain
1.62 × 10-8 7.79 -10.62 d 7.4 25

37 1IJK_A:BC Von Willebrand Factor Domain A1 Botrocetin 2.3 × 10-8 7.64 -10.41 c 7.4 25
38 1H1 V_A:G Actin Gelsonin 2.3 × 10-8 7.64 -10.24 b 7.0 20
39 1DE4_AB:CF HFE Transferrin receptor ectodomain 2.4 × 10-8 7.62 -10.39 d 7.4 25
40 1E6J_HL:P Fab HIV-1 capsid protein 24 2.9 × 10-8 7.53 -10.28 d 7.4 25
41 2HLE_A:B Ephrin B4 receptor Ephrin B2 ectodomain 4.0 × 10-8 7.4 -10.09 f 7.8 25
42 1ATN_A:D Actin Dnase I 4.5 × 10-8 7.35 -10.02 e 8.4 25
43 1WEJ_HL:F Fab E8 Cytochrome C 6 × 10-8 7.22 -9.85 f 7.2 25
44 1A2K_C:AB Ran GTPase Nuclear Transport Factor 2 1 × 10-7 7.00 -9.54 f 7.5 25
45 2C0L_A:B PTS1 and TRP region of PEX5 SCP2 1.09 × 10-7 6.96 -9.81 f 7.4 35
46 1RLB_ABCD:E Transthyretin Retinol binding protein 1.34 × 10-7 6.87 -9.37 a 7.4 25
47 1GLA_G:F Glycerol kinase Glucose specific phosphocarrier 1.8 × 10-7 6.74 -9.20 d 7.4 25
48 2HRK_A:B Glutamyl-t-RNA synthetase GU-4 nucleic binding protein 1.93 × 10-7 6.71 -9.15 d 7.4 25
49 1GP2_A:BG Gi-R Gi-�,γ 2.54 × 10-7 6.60 -9.14 c 7.5 30
50 1FAK_HL:T Coagulation factor VIIa Soluble tissue factor 2.8 × 10-7 6.55 -8.93 d 7.5 25
51 1GRN_A:B CDC42 GTPase CDC42 GAP 3.88 × 10-7 6.41 -8.74 a 8.0 25
52 1E6E_A:B Adrenoxin reductase Adrenoxin 0.86 × 10-6 6.07 -8.27 d 7.4 25
53 1J2J_A:B Arf1 GTPase GAT domain of GGA1 1.1 × 10-6 5.96 -8.12 d 8.0 25
54 1BUH_A:B CDK2 Kinase Ckshs1 1.5 × 10-6 5.82 -7.54 f 7.5 10
55 1GPW_A:B HISF protein Amidotransferase 6 1.5 × 10-6 5.82 -7.94 e 8.5 25
56 2OT3_B:A Rab21 GTPase Rabex-5 VPS9 domain 1.8 × 10-6 5.74 -7.83 aPolarization 7.4 25
57 2BTF_A:P Actin Profilin 2.3 × 10-6 5.70 -7.69 a 7.0 25
58 1EFN_B:A HIV1-NEF protein SH3 domain 2.5 × 10-6 5.60 -7.64 d 7.4 25
59 1HE8_B:A Ras GTPase PIP3 kinase 2.5 × 10-6 5.60 -7.51 aPolarization 7.5 20
60 1B6C_A:B FKBP Binding Protein TGF� receptor 2.8 × 10-6 5.55 -7.57 d 7.4 25
61 1SBB_A:B T-cell receptor � Staphylococcus enterotoxin B 3.00 × 10-6 5.52 -7.53 d 7.5 25
62 1I4D_D:AB Rac GTPase Arfaptin 3 × 10-6 5.52 -7.45 f 8.7 22
63 1GHQ_A:B Complement C3 Epstein-Barr visus receptor CR2 4.3 × 10-6 5.37 -7.32 d 7.4 25
64 2MTA_HL:A Methylamine Dehydrogenase Amicyanin 4.5 × 10-6 5.35 -7.29 g 7.5 25
65 1E96_A:B Rac GTPase p67 Phox 6 × 10-6 5.22 -6.95 f 7.0 18
66 1Z0K_A:B Rab4A GTPase RAB4 binding domain of Rabenosyn 7.2 × 10-6 5.14 -7.01 d 7.5 25
67 1QA9_A:B CD2 CD58 9 × 10-6 5.05 -7.16 d 7.4 37
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Even the affinity-based predictor AFFINITYSCORE 1.0 had
limited predictive power over the whole data set. Although its
score shows one of the highest correlations (r ) -0.29) with
experimental data (Figure 1), it is still low. However, the quality
of the predictions is greatly improved when the complexes are
refined in water compared to the direct scoring of the original
crystal structures or of the minimized complexes (Figure 1 and
Supporting Information). Interestingly, grouping the experi-
mental data into methodology-oriented categories reduces the
prediction noise: Most of the algorithms, including AFFINITY-
SCORE1.0, now show significant correlation coefficients to
several experimental techniques (see below).

Weak Correlations Emerge When Experimental Binding
Affinities Are Grouped According to the Method by Which
They Were Determined. If complexes are classified according
to the method by which their dissociation constants have been
determined, significant correlations emerge (see Figure 1, Table
2 and Supporting Information). AFFINITYSCORE1.0 exhibits the
highest correlation to the data accumulated from spectropho-
tometric assays, with an R2 reaching 0.55. Other algorithms
perform equally well in predicting this data set, as shown in
Table 2. However, due to the limited amount of data (only 9
complexes were found to have a dissociation constant deter-
mined by spectrophotometric assays), these results should be
treated with caution. For example, although DFIRE score
strongly correlates to these data (r ) 0.78), this correlation is
positive, meaning that the DFIRE predictions and the experi-
mental affinities are anticorrelated for this particular data set!

When more measurements are considered from standardized
techniques, surface plasmon resonance (SPR) data appear to
correlate weakly to the DFIRE score (Table 2 and Figure 1),
the PISA entropy component (T∆S) and the FIREDOCK and
PYDOCK scores. PYDOCK, FASTCONTACT and AFFINITY-
SCORE1.0 show significant correlation coefficients when com-
pared to data from Isothermal Titration Calorimetry experi-
ments. However, the scoring performance of the various
algorithms tends to be orthogonal when considering binding
measurements from the other techniques (fluorescence- and
radioligand-based techniques).

Linear Correlation Emerges When Grouping the Low,
Medium, and High Affinity Complexes. Considering the poor
performance of scoring functions in predicting individual

binding affinities, we investigated if the scores would have a
predictive power in classifying the complexes in three catego-
ries: high, medium, or low affinity according to the classifica-
tion in Table 1. For this, the average binding affinity and scores
(with their corresponding standard deviations) were calculated
for each of the three classes of complexes. Their putative
interdependence was assesed by the Pearson-product momen-
tum coefficient. Results show that high correlations emerge:
Five out of ten algorithms have at least one component that
correlates nicely to the binding affinity (Table 3). All compo-
nents are shown in Supporting Information Tables Table 2s
and 3s. Statistically significant correlations are found for the
buried surface area (present is several scoring functions), the
HADDOCK score and its van der Waals component (after water
refinement), the FIREDOCK score and its attractive van der
Waals component and several components of the ROSETTA-
DOCK score (Table 3). Note that several components only show
significant correlation to binding affinity after water-refinement
of the complexes (Table 3, B Rows). Another interesting
observation is that the only solvation term that correlates with
binding affinity is the Lazaridis-Karplus desolvation energy
term,52 implemented in the ROSETTADOCK scoring function.

When the refined complexes are divided into four categories
instead of three (High (Kd < 10-9 M), Medium (10-9 M e Kd

<10-7 M), Medium/Low (10-7 M e Kd <10-5 M), Low/Very Low
(Kd g 10-5 M)), several scores still show robust correlations:

• The FIREDOCK score (r ) -0.96) along with two of its
components, the London dispersion forces (r ) 0.97) and
Hydrogen bonds (r ) -0.89)

• The ROSETTADOCK London dispersion forces (r ) 0.94)
and the backbone-backbone hydrogen bonding term corre-
sponding to distant residues in the primary sequence of the
complexes (r ) -0.99)

• The Electrostatics component of the FASTCONTACT score
(r ) -0.96).

Even a further categorization of the binding affinities into 5
classes (Very High (Kd < 10-10 M), High (10-10 M e Kd < 10-8

M), Medium (10-8 M e Kd <10-6 M), Low (10-6 M e Kd <10-5

M), Very Low (Kd g 10-5 M)) reveals again some significant
correlations. The FireDock score and FIREDOCK Hydrogen
bonds have still high correlations to the affinity-based groups,
with r’s of -0.92. Some other correlations are also constant,

Table 1. Continued

PDB ID
(complex) protein 1 (receptor) protein 2 (ligand)

Kd

(mol/L)a pKd

∆Gθb

(kcal/mol) methodc pH T(oC)

68 1FC2_C:D Staphylococcus protein A Human Fc fragment 1 × 10-5 5.00 -6.82 d 7.2 25
69 1AZS_AB:C Adenylyl cyclase AC activator Gs R complex 1 × 10-5 5.00 -6.82 eScintillation 8.0 25
70 2PCC_A:B Cyt C peroxidase Cytochrome C 1 × 10-5 5.00 -6.82 f 6.0 25
71 1AK4_A:D Cyclophilin HIV capsid 1.60 × 10-5 4.80 -6.43 f 6.5 20
72 1GCQ_B:C GRB2 C-ter SH3 domain GRB2 N-ter SH3 domain 1.68 × 10-5 4.77 -6.51 d 7.4 25
73 1WQ1_R:G Ras GTPase Ras GAP 1.7 × 10-5 4.77 -6.50 b 7.5 25
74 1I2M_A:B Ran GTPase RCC1 3.16 × 10-5 4.50 -6.14 b 7.4 25
75 2OOB_A:B Ubiquitin ligase Ubiquitin 6.0 × 10-5 4.22 -5.76 f 7.0 25
76 1NW9_B:A Caspase-9 XIAP-BIR3 7.4 × 10-5 4.13 -5.73 a 6.5 30
77 1AKJ_AB:DE MHC Class I HLA-A2 T-cell CD8 coreceptor 1.26 × 10-4 3.90 -5.32 d 7.4 25
78 1R8S_A:E Arf1 GTPase Sec 7 domain 1.50 × 10-4 3.82 -5.21 aPolarization 8.0 25
79 1IB1_AB:E 14-3-3 protein Serotonin N-acetylase 2.34 × 10-4 3.63 -4.87 f 7.0 20
80 2HQS_A:H TolB Pal 4.70 × 10-4 3.33 -4.46 f 7.5 20
81 1S1Q_A:B UEV domain Ubiquitin 6.35 × 10-4 3.19 -4.29 d 7.2 20

a Corresponding references for each biochemically determined binding affinity value are included in Supporting Information, Detailed materials and
methods. b ∆Gθ corresponds to the calculated Gibbs free-energy for the system, estimated directly from ∆Gθ ) -RT ln Kd, where R is the gas constant and
T the absolute temperature. Kd corresponds to the experimentally determined binding affinity, Kd ) kon/koff. c Methods: (a) fluorescence spectroscopy; (b)
stopped-flow fluorimetry; (c) radioligand binding (competitive binding experiments); (d) surface plasmon resonance; (e) spectrophotometric assays; (f)
isothermal titration calorimetry; (g) HPLC/UV absorption analysis.
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including the FASTCONTACT electrostatics (r ) -0.88), the
ROSETTA score (r ) -0.88) and its Electrostatics component

(r ) -0.95). An analysis of the minimized complexes reveals
similar trends (data not shown). Another interesting observa-

Figure 1. Scatter plots of binding affinity (-log(Kd)) (x-axis) versus score (y-axis) for the 81 water refined complexes from our binding
affinity benchmark. The scores were calculated using nine different scoring functions and a binding affinity prediction algorithm (panels
A-L, see text). r and p-values are indicated in each plot. Different colors and shapes of the data points correspond to different
methodology followed to experimentally determine binding affinity.
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tion is that HADDOCK Electrostatics also shows very high r’s
when classified into 4 (r ) -0.96) or 5 (r ) -0.83) categories
but not into 3 (r ) -0.89, not statistically significant). The
electrostatics component of ROSETTADOCK is also robust
when the complexes are classified in 4 (r ) -0.91) or 5 (r )
-0.89) categories.

These results indicate that several of the algorithms tested
in this work incorporate a component that might be meaningful
and useful for a qualitative description of binding affinity; some
of them remain robust when defining more than three classes.
Unfortunately, all terms are associated with huge standard
deviations (see Table 3), underlying that neither the algorithms
nor their components alone can in reality predict if a given
complex is of high, medium or low affinity. For that reason,
the presented results should be handled with caution.

Discussion

This work represents the first systematic assessment of the
performance of scoring functions in protein-protein docking
for the prediction of binding affinities. Our binding affinity
benchmark comprises Kd values described in the literature for
81 complexes from the Protein-Protein docking Benchmark
3.0.28 Our results clearly demonstrate that current scoring
functions are very much limited in their ability to predict
binding affinity.

One reason is that scoring in biomolecular docking has been
developed to discriminate the native structure from thousands
of decoy structures, and not for binding affinity prediction since
we typically already know in protein-protein docking that a
given pair will interact. However, the two problems need to
converge, in order to have reliable scoring functions that
discriminate false positives along with correctly predicted
structures. An important conclusion from this work is that,
given the structure of three proteins, and knowing a priori that
two of them bind and one does not, we are still very much
limited in our ability to predict the correct pair.

Moreover, binding affinity greatly depends on temperature,
pH and salt concentration53 and can also be affected by high
concentrations of other macromolecules, a phenomenon that
is described as macromolecular crowding.54 Thus, it seems
highly unlikely to directly correlate a function, even knowledge-
based, to experimental, biochemically determined Kd’s: from
experiment to experiment, temperature, pH and salt concen-

trations might change and our benchmark, which is the first
of its kind, might well reflect that. Considering the results from
Figure 1 and Table 2 (as well as the Supporting Information) it
is evident that scoring functions exhibit weak, but significant
correlations to binding affinities determined by Surface Plas-
mon Resonance, Isothermal Titration Calorimetry and various
Spectrophotometric Assays. On the other hand, algorithms were
completely orthogonal when fluorescence data were put to the
test. Noise in experimental data can be an additional factor
that influences the performance of the various algorithms in
predicting the affinity. The very poor correlations observed with
fluorescence-based techniques, such as resonance energy
transfer (FRET), fluorescence polarization or anisotropy with
tagged molecules might indeed correspond to the inherent
limitations of these techniques (e.g., general problems of
fluorophores). Binding affinity data measured through Radio-
ligand binding assays are also orthogonal to scoring. These
results might stem from the fact that results obtained by these
methods are highly influenced by slight variations in the
experimental procedures. On the other hand, the label-free SPR
technique and thermodynamic measurements with ITC along
with traditional methods for affinity measurements give better
correlations between the experimental data and the scores
calculated by the algorithms; still, these correlations remain
low.

It is known that the mechanism of protein binding is highly
dependent on the particular system:55 Depending on the ion
concentration, the association rate of fast binders (kon > 108
M-1 s-1) might significantly change56 in comparison to the
corresponding value of slow binders (kon < 108 M-1 s-1) that
remain much more constant.57 The fast binding mechanism
is based on long-range electrostatic interactions that drive the
molecules to find each other,58 whereas the slow binding
process is mostly controlled by desolvation forces and van der
Waals interactions.57 The fact that a really high kon does not
necessarily reflect a Kd that can possibly describe a high affinity
complex is overseen by the algorithms.

Scoring algorithms need to incorporate biochemical infor-
mation that relates to the kon value and possibly give different
weights to the Electrostatic or the van der Waals components.
This can be achieved by analyzing structural parameters of the
input 3D structures. For example, high-throughput comparative
research aiming at deciphering global structural features of fast

Table 2. Pearson’s Correlation Coefficients between Scoring of the Water Refined Complexes and Experimentally Determined
Dissociation Costants (Kd’s)a

binding affinity
data

(N ) 81)

surface plasmon
resonance
(N ) 33)

isothermal
titration

calorimetry
(N ) 15)

fluorescence
spectroscopy

and FRET
(N ) 13)

spectro-
photometric

assays
(N ) 9)

radioligand
binding
(N ) 7)

stopped-flow
fluorimetry

(N ) 4)

AFFINITY1.0 -0.29 -0.29 -0.61 0.04 -0.74 -0.36 0.15
HADDOCK -0.16 -0.34 -0.31 0.19 -0.40 0.35 0.32
PISA (∆Gdiss) 0.18 0.24 -0.13 -0.10 0.73 0.01 -0.12
PISA (T∆S) 0.11 0.42 -0.19 -0.11 -0.59 -0.60 -0.54
ZRANK -0.18 -0.12 -0.50 0.20 -0.51 -0.10 0.58
FIREDOCK -0.32 -0.42 -0.42 0.32 -0.63 -0.02 -0.20
FASTCONTACT -0.14 -0.08 -0.63 0.30 -0.28 0.54 -0.02
ROSETTA -0.19 -0.34 -0.33 0.44 -0.71 0.13 -0.670
ROSETTAb -0.06 -0.15 -0.33 0.53 -0.71 0.061 0.447
DFIRE -0.16 -0.58 0.33 0.24 0.78 0.59 0.38
PYDOCK -0.22 -0.38 -0.66 0.41 0.32 0.214 -0.09
ATTRACT -0.25 -0.33 -0.50 -0.05 -0.70 0.216 0.39

a Numbers highlighted in both bold and italics show very significant correlations (p-value <0.01), bold typeshows significant correlations (0.01 e p-value
<0.05), whereas numbers highlighted in italics show correlations of potential interest (0.05 e p-value <0.1). b Rosetta scoring of the interface (I_int).
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Table 3. Statistical Analysis of the Various Scoring Functionsa

scoring function component A/B average high average medium average low r value, p-value

HADDOCK HADDOCK score A -146.4 ( 49.4 -130.2 ( 45.2 -111.0 ( 47.6 -0.998, 0.038

B -152.9 ( 64.6 -131.6 ( 54.1 -114.7 ( 57.9 -0.998, 0.037

van der Waals B -82.5 ( 33.4 -69.3 ( 20.0 -54.8 ( 24.9 -0.999, 0.021

Buried Surface Area A 2340.2 ( 1163.3 2043.2 ( 561.4 1757.5 ( 660.4 ∼1.000, 0.001

B 2345.1 ( 1071.8 2133.3 ( 589.7 1789.6 ( 707.1 0.989, 0.093

PISA PISA ∆G (dissociation) A 0.0 ( 5.7 -1.3 ( 4.1 -2.1 ( 5.3 0.988, 0.097

B 0.2 ( 6.2 -1.3 ( 4.0 -2.4 ( 4.7 0.997, 0.051

Buried Surface Area A 1118.8 ( 537.6 990.3 ( 268.5 857.8 ( 316.8 ∼1.000, 0.012

B 1120.5 ( 538.8 990.3 ( 267.1 810.3 ( 353.4 0.995, 0.065

FIREDOCK FIREDOCK score A -101.4 ( 32.6 -84.5 ( 26.7 -69.6 ( 36.6 ∼-1.000, 0.017

B -99.3 ( 32.5 -82.2 ( 26.9 -66.7 ( 35.3 ∼-1.000, 0.011

attractive van der Waals A -56.3 ( 17.8 -50.6 ( 12.0 -44.7 ( 15.6 ∼-1.000, 0.010

B -56.8 ( 18.0 -50.1 ( 12.6 -43.2 ( 15.6 ∼-1.000, 0.014

repulsive van der Waals B 16.8 ( 9.1 14.7 ( 5.9 11.7 ( 7.0 0.993, 0.074

analytical continuum electrostatics
potential

A -2.7 ( 16.2 -2.1 ( 10.2 -1.3 ( 12.1 -0.996, 0.055

hydrogen bonds A -9.5 ( 3.7 -7.4 ( 3.4 -5.5 ( 3.2 ∼-1.000, 0.013

ROSETTA strand-strand pairing A -1.7 ( 3.0 -1.1 ( 2.8 -0.5 ( 1.4 -0.999, 0.020

residue pair potentials A -10.9 ( 12.1 -9.6 ( 8.1 -7.9 ( 9.9 -0.995, 0.065

B -10.9 ( 12.1 -9.6 ( 8.1 -8.2 ( 9.9 ∼-1.000, 0.014

van der Waals A 0.2 ( 0.4 0.3 ( 0.5 0.5 ( 0.9 -0.994, 0.067

B 0.2 ( 0.4 0.3 ( 0.5 0.5 ( 0.8 -0.990, 0.091

C� packing density A -2.0 ( 2.0 -2.1 ( 1.3 -2.3 ( 1.2 ∼1.000, 0.011

B -2.0 ( 2.0 -2.2 ( 1.3 -2.3 ( 1.2 0.993, 0.075

strand pair distance/register B -0.6 ( 1.2 -0.5 ( 1.1 -0.3 ( 0.8 -0.993, 0.074

attractive van der Waals potential B -48.2 ( 16.7 -39.6 ( 11.8 -33.4 ( 12.8 -0.996, 0.056

repulsive van der Waals A 15.9 ( 37.7 10.0 ( 14.2 5.8 ( 6.1 0.996, 0.056

Lazaridis-Karplus solvation A 32.5 ( 14.7 26.9 ( 9.6 23.1 ( 10.8 0.995, 0.061

B 32.5 ( 14.9 26.8 ( 9.4 22.2 ( 11.0 0.999, 0.031

side chain hydrogen bonds B -7.9 ( 4.1 -6.4 ( 3.6 -5.2 ( 3.5 -0.999, 0.030

surface-area based solvation model A -28.6 ( 15.2 -25.8 ( 6.7 -22.4 ( 8.1 -0.998, 0.037

statistics based pair term, favors
salt bridges

B -3.6 ( 3.0 -3.4 ( 2.1 -3.0 ( 2.0 -0.992, 0.083

Buried surface area A 2326.4 ( 1140.3 2051.2 ( 564.2 1797.4 ( 646.3 ∼1.000, 0.009

B 2327.2 ( 1135.1 2050.9 ( 561.5 1724.5 ( 656.6 0.998, 0.037

Coulomb term of interface atoms B -78.1 ( 163.7 -74.8 ( 84.0 -69.2 ( 95.2 -0.988, 0.099

AFFINITYSCORE1.0 ∆Gθ B -15.9 ( 3.6 -12.7 ( 6.8 -10.7 ( 6.8 -0.995, 0.064

a The first and the second columns show the algorithms tested and each of its corresponding components. The third column indicates which
complexes were analyzed: (A) energy minimized and (B) water refined (see Material and Methods). The next three columns illustrate the average of each
affinity-related group, along with the standard deviation. The r-value and the p-value are related to the average binding affinity of each group, shown in
the last two columns of the Table. Bold and italics numericals correspond to two groups of significant values, 0 < p-value e 0.05 and 0.1 > p-value >0.05,
respectively. (All scores and their components are reported in Tables 2s and 3s in the Supporting information).
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and slow macromolecular binders should greatly improve our
knowledge in this field and help us develop new algorithms.

Despite the challenging aspect of the problem (binding
affinity is related to free energy, one of the most challenging
quantities to predict in computational studies), there is still
some hope: The major outcome of this study is that several
components of the scoring functions that were tested in this
study correlate to affinity, when the latter are grouped in three
sets (high, medium and low) and remain robust when classified
in four, or even five categories. The predictive power is however
limited due to the huge associated standard deviations. Despite
this, our results point to new directions, where, in order to
design novel algorithms that can successfully describe the
binding affinity of a protein-protein complex, consensus
functions, possibly combining scores or their components from
different algorithms, need to be developed. These can also
include classifiers trained by supervised learning. In protein-
ligand drug design, nonlinear models, including, for example,
Support Vector Machines,59 have already been applied to this
problem. Our benchmark will be a valuable catalyst to achieve
this goal. It provides a starting point for the design of novel
algorithms that might open the route to the prediction,
characterization and annotation of complete interactomes by
high-throughput computational docking.
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