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A multi-step virtual screening was carried out in order to identify inhibitors of human NAD+-

dependent deacetylase sirtuin 2 (Sirt2). Molecular mechanics Poisson–Boltzmann surface area

(MM-PB/SA) and linear interaction energy (LIE) calculations were carried out on a training set of ten

recently identified Sirt2 inhibitors from our laboratory. The docking scores did not reproduce the

relative binding free energies estimated from the in vitro data, while the LIE and the MM-PB/SA data

were found to be in good agreement with the experimental data for the ten inhibitors. Both binding free

energy methods were successful in predicting the activity of 14 novel identified thiobarbiturates and led

to Sirt2 inhibitors that are ten-fold more active than those from the training set. The provided data

obtained by the combination of docking and MD-based binding free energy calculations show the

performance of the approach for predicting the binding free energy of novel sirtuin inhibitors.
Introduction

Computational methods are nowadays routinely used for

discovery of new lead structures, and to understand the struc-

tural and energetic relationship between ligands and proteins.

However, discovering novel bioactive compounds that bind to

a target with a high affinity is still challenging. There are many

approaches employed to predict the binding free energy of

a small molecule to a protein target. Free energy perturbation

(FEP) and thermodynamic integration (TI) methods have been

successfully applied to reproduce experimentally determined

binding free energies.1,2 However, these approaches are compu-

tationally expensive. Docking programs on the other hand are

fast and use simple scoring functions to predict the binding

strength of ligands.3–5 A vast number of docking/virtual

screening studies have been published over the last few years

which could show that these methods are able to provide novel

hits. However, to date the scoring functions included in docking

programs are too inaccurate to further optimize the identified

hits.
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Two approaches—molecular mechanics Poisson–Boltzmann

surface area (MM-PB/SA)6–8 and linear interaction energy

(LIE)—have recently become of interest in drug discovery as

alternatives for predicting relative binding free energies. The LIE

approximation was first described and further extended by

Aqvist et al.9 The LIE derived binding free energies are estimated

from molecular dynamics (MD) or Monte-Carlo (MC) simula-

tions. The concept of this method is to separately evaluate the

electrostatic and van der Waals interaction energies of the ligand

in bound and free states. Thus, two MD simulations have to be

performed: one with the ligand bound to receptor and one with

the unbound ligand in solvent. The binding free energy is

calculated as:

DGbind ¼ DGsol
P � DGsol

W (1)

where DGsol denotes the solvation free energy of transferring

ligand from the gas-phase to the different environments, protein

and water. The solvation free energies are obtained as a sum of

intermolecular electrostatic and van der Waals interactions. The

averages of interaction energies between the ligand and its

surroundings are obtained from the equation:

DGcalc ¼ aDEvdw + bDEEL + g (2)

where DEvdw describes the van der Waals interaction energy and

DEEL the electrostatic interaction energy of the ligand bound to

the receptor and the ligand free in solution. a and b values are

fitting parameters which were obtained by using linear regression

analysis. The third term is a constant termed g which sometimes
Med. Chem. Commun., 2012, 3, 167–173 | 167
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Fig. 1 Thiobarbiturates and barbiturates used as the training set (taken

from ref. 30).
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needs to be included in order to obtain a reasonable correlation.

Another very common method for calculating binding free

energy values is the MM-PB/SA approach, pioneered by Koll-

man et al.7 The MM-PB/SA approach has been applied in many

different areas, e.g. the study of the stability of DNA binders,10

or the estimation of the binding free energies of protein–ligand

complexes.3,11

Histone deacetylases (HDACs) are transcriptional regulators

that deacetylate histones but also a high number of other non-

histone proteins. The enzymatic activity affects the conforma-

tional state and the activities of the substrate proteins. Four

classes of histone deacetylases have been described in humans:

classes I, II and IV have been shown to be zinc dependent ami-

dohydrolases and eleven subtypes have been described (HDAC1-

11).12 Class III enzymes rely in their catalysis on the cofactor

NAD+. Based on the homology to the yeast histone deacetylase

Sir2p the NAD+-dependent deacetylases have been termed sir-

tuins and seven members (Sirt1–7) have been identified in

humans.13 Whereas class I, II and IV histone HDACs have been

identified as valid anticancer targets and two inhibitors have been

approved for clinical use,14 much less is known about the

consequences of class III HDAC inhibition.13 Sirtuins have been

linked to aging and overexpression of sirtuins leads to a pro-

longed lifespan in yeast.15 More recently, sirtuins activity has

been tied to the pathogenesis of HIV16 and cancer17–19 and also

neurological diseases.20 Only a limited number of sirtuin inhibi-

tors is known and some of them do not inhibit human

subtypes.21–29 (For review see ref. 21 and 22.) Recently, we

identified thiobarbiturates as novel class of sirtuin inhibitiors.30

The aim of this work was to identify more active thio-

barbiturates as sirtuin inhibitors by virtual screening of large

compound libraries. In addition we were interested to compare

and apply two MD based binding free energy calculation

methods, MM-PB/SA and linear interaction energy (LIE),

respectively. The ensemble averages derived from MD simula-

tion were used for calculating enthalpy and entropy terms for

MM-PB/SA as well as Evdw and Eele energies for the LIE model.

The derived binding free energy models were applied to evaluate

the inhibitory activity of unknown compounds selected from

a virtual screening on Sirt2.
Results

Virtual screening

Based on our recently identified thiobarbiturates as Sirt2 inhib-

itors we conducted a further virtual screening (VS) using the

Chembridge database in order to find more potent

compounds.30,31MACCS key fingerprints were used to search the

Chembridge database for compounds similar to the most active

thiobarbiturates from our previous work (compounds 3 and 6,

Fig. 1).30 This resulted in 637 compounds which were subse-

quently filtered by applying the following criteria: Mw > 500, log

P < 4, topological polar surface area TPSA < 140 �A.2 The

resulting 510 molecules were docked in the Sirt2 binding pocket

using the GOLD program.32 The human Sirt2 crystal structure

(monomer B)33 was used for the docking study as previously

described.30 129 compounds showed a Goldscore higher than 40

and were further analyzed using calculated molecular interaction
168 | Med. Chem. Commun., 2012, 3, 167–173
fields of the Sirt2 binding pocket. 14 thiobarbiturate derivatives

were manually selected after visual inspection of their binding

mode and their biological data were predicted using binding free

energy calculations (Fig. 2).

All docked thiobarbiturate compounds showed the same

binding mode as exemplarily shown for compound 16 (Fig. 3).

The binding mode is in agreement with results for compounds 3

and 6, as recently reported.30 Hydrogen bonds were detected with

the polar residues Asn168, His187 and the water molecules. The

hydrophobic parts of the molecules interact with the acetyl lysine

channel including the amino acids Phe119, His187, Val233 and

Phe234. The 14 compounds were tested in a Sirt2 in vitro assay

and showed inhibition in the low micromolar range (1.5–5.8 mM,

Table 1). The most active compounds with IC50 values around

1 mM showed favourable hydrophobic interactions in the acetyl

lysine channel. Calculated molecular interaction fields using

a hydrophobic methyl probe supported the importance of the

hydrophobic interactions in the acetyl lysine channel (Fig. S1,

ESI†). Molecular dynamics simulations which were carried out

for all compounds showed that the Sirt2-inhibitor complexes are

stable with low root mean square deviation (RMSD) values

(Fig. S2, ESI†).
Binding free energy calculations

Two different approaches, namely MM-PB/SA34 and LIE,9 were

applied for estimating the binding free energy of the compounds

under study. For evaluating the accuracy of different binding free

energy approaches (MM-PB/SA and LIE) ten thiobarbiturate

compounds developed in our laboratory were considered for

model generation.30 Subsequently, the derived models were used

for predicting the activities of the novel compounds identified by

virtual screening of the Chembridge compound collection.

The 14 novel thiobarbiturates were tested in an in vitro Sirt2

assay as described in the ESI†. All compounds gave IC50 values
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 14 candidates found in virtual screening were used as the test set

in this study.

Fig. 3 Predicted docking pose for compound 16 (coloured orange). (A)

The molecular surface of the Sirt2 binding pocket is displayed and col-

oured according to the hydrophobicity (magenta ¼ hydrophilic, green ¼
hydrophobic). (B) Interacting amino acids are displayed. Hydrogen

bonds are shown as green dashed lines. Water molecules are shown as

cyan coloured balls.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Pe
nn

sy
lv

an
ia

 L
ib

ra
ri

es
 o

n 
26

 F
eb

ru
ar

y 
20

13
Pu

bl
is

he
d 

on
 2

8 
N

ov
em

be
r 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1M
D

00
21

4G

View Article Online
in the range between 6 and 1 mM, which is below the range

observed for the first series of thiobarbiturates (Table 1).

MM-PB/SA calculations

TheMDtrajectories from the endof the simulation timewere used

to apply the MM-PB/SA method (see ESI† for further details).

The absolute free energy of a system is estimated from a combi-

nation of molecular mechanics, i.e. Poisson–Boltzmann
This journal is ª The Royal Society of Chemistry 2012
estimation of the electrostatic free energy determined from the

exposed surface area, and an estimate of the entropy of the system

derived from normal mode calculations (Table S1, ESI†). The

correlation betweenDGexp and predictedDG valueswas expressed

in terms of the square of the correlation coefficient (r2). The DG

model was generated by using ten compounds as a training set as

shown in Fig. 1 and gave a correlation coefficient of r2 ¼ 0.54 and

a root mean square error (RMSE) of 0.24 kcal mol�1 (Fig. 4). In

the same way the calculated enthalpy of binding values (DH) were

fittedwith the experimentalDGexp values (Table 1). For thismodel

the correlation coefficient was slightly higher (r2¼ 0.61, RMSE¼
0.22 kcal mol�1) as shown in Fig. 5A. Compound 10was found to

be an outlier because the difference between calculated and

experimental values is high in comparison to the other

compounds. The MD simulation of compound 10 showed larger

RMSD values as a consequence of larger adaption of the protein

to the inhibitor. As a consequence the final DH value of this

compound was significantly higher compared to the other similar

compounds. Therefore this compound was excluded from the

model generation. Excluding it resulted in a significantly better

correlation (r2¼ 0.76 andRMSEof 0.18kcalmol�1) (Fig. 5B).The

leave-one-out cross-validation coefficient r2LOO was calculated as

0.64 indicating the robustness of the reduced model. Therefore,

the reduced dataset was used for the prediction of the compounds

identified by the virtual screening.
Med. Chem. Commun., 2012, 3, 167–173 | 169
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Table 1 Predicted biological data for the 14 novel compounds, pIC50predDH—values predicted using the DH model, pIC50predDG—values predicted
using the DG model, pIC50—experimental data, error difference between experimental and calculated values

Cpd
Chembridge
name IC50 Sirt2/mM pIC50 pIC50predDH Error pIC50predDG Error

11 6486096 5.8 � 0.4 5.23 5.32 0.09 5.02 0.21
12 5851689 5.8 � 0.9 5.23 5.47 0.24 4.29 0.94
13 5860305 4.9 � 0.5 5.30 5.38 0.08 4.48 0.82
14 6446861 1.8 � 0.6 5.74 5.60 0.14 4.84 0.90
15 6218896 3.9 � 0.3 5.40 5.90 0.50 4.90 0.50
16 5680998 2.6 � 0.9 5.58 5.64 0.06 5.60 0.02
17 5545264 1.5 � 0.4 5.82 5.59 0.23 4.93 0.89
18 6568425 5.5 � 1.3 5.26 5.62 0.36 5.33 0.07
19 5483251 2.2 � 0.1 5.19 5.31 0.12 5.03 0.16
20 7093707 6.5 � 0.5 5.66 5.66 0.00 5.20 0.46
21 5875121 3.8 � 0.3 5.42 5.55 0.13 5.46 0.04
22 5966223 2.8 � 0.5 5.55 5.65 0.10 5.03 0.52
23 6060663 3.5 � 0.4 5.46 5.54 0.08 5.06 0.40
24 6194121 5.7 � 0.5 5.24 5.54 0.30 5.18 0.06

Fig. 4 Correlation between experimental pIC50 values and calculated

DG values from the MM-PB/SA model. Training set, n ¼ 10.

Fig. 5 Correlation between experimental pIC50 values and calculated

DHtot values from the MM-PB/SA model. (A) Training set, n ¼ 10. (B)

Outlier removed. Training set, n¼9.
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The MM-PB/SA derived DG and DH models were applied to

predict the affinities for the test set compounds n ¼ 14 (Fig. 2).

The predicted values using the DG model were found to be quite

far away from the DGexp values, thus resulting in a large devia-

tion of the residual values (�0.9 log units for compounds 12, 14

and 17) (see Table 1). The DG model gave a correlation coeffi-

cient of prediction r2PRED ¼ 0.78 for the 14 test set compounds

and an overall r2 value of 0.60 (data not shown). However, it has

to be stated that the training set and the test activities set are

quite different. In the training set pIC50-values are between 3.88

and 5.04 while in the test set between 5.19 and 5.74. On the other

hand, the enthalpy model DH showed excellent results (Table 1)

with an r2PRED ¼ 0.96 for the 14 test set compounds and an

overall r2 ¼ 0.80 for all 24 compounds (Fig. 6). The maximum

error observed here was 0.50 log units for compound 15. Upon

comparison of the two models it is obvious that the DH model

was accurate for predicting the test set molecules and that the

problem of the DG model lies in the entropy change upon

binding. In general, entropy calculation is a difficult task espe-

cially if the conformational fluctuations are significant.11
LIE calculations

Based on MD simulations the electrostatic and van der Waals

interactions were calculated to solve the binding free energy

equation (eqn (1) and (2)). The experimental data were then
170 | Med. Chem. Commun., 2012, 3, 167–173
fitted with the calculated binding energy to obtain DG predicted

values listed in Table 3. The empirical parameters a, b and

constant g were determined using the least-square error fitting

method within the MOE program and solved in a fashion

similar to that of QSAR models. Two models were prepared:

model (1), where a, b and g parameters were evaluated, and

model (2), where only a and b were evaluated and g was set to

zero.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 6 Correlation between experimental pIC50 values and calculated

DH values for training and test set thiobarbiturates (outlier from Fig. 5A

removed). Training set molecules are coloured white.

Fig. 7 Correlation between experimental pIC50 values and calculated

DGLIE values obtained from the (A) LIE model 1 and (B) LIE model 2.

Training set, n ¼ 10.
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Based on the results from training set compounds and the

three parameter equation, two models were estimated, model 1

(eqn (3)) and model 2 (eqn (4)):

DGbinding ¼ 0.14(EvdW) � 0.11(Eele) � 3.98 (3)

DGbinding ¼ 0.36(EvdW) � 0.17(Eele) + 0 (4)

For model 1 (Fig. 7A and Table 2) correlation between DGexp

and predicted DG values was r2 ¼ 0.74 with an RMSE of 0.25.

The second model described with eqn (4) gave a lower correlation

with an r2 ¼ 0.58 and an RMSE of 0.32 (Fig. 7B and Table 2).

Thus, the models showed comparable statistical values as the

MM-PB/SA DH model. In addition, the two LIE models were

applied to predict the binding free energy of the 14 test set

compounds, in order to see whether comparable accuracy as

observed for the MM-PB/SA model could be derived. The LIE

model 1 gave a correlation coefficient of r2PRED ¼ 0.68 for the

test set compounds and an overall correlation coefficient of r2 ¼
0.47 for all 24 compounds (Fig. 8A). The LIE model 2 which

showed a lower correlation for the training set showed a higher

r2PRED value of 0.72 for the test set and an overall r2 ¼ 0.62 for all
Table 3 Overview of the electrostatics (DEele) and van der Waals (DEvdw) ene
with a fitting parameter g s 0, and (DGLIE2) with a fitting parameter g ¼ 0,

Ligand-surrounding interactions/kcal mol�1

Cpd Evdw-bound Evdw-free Eele-bound Eele

11 �40.29 �22.79 �26.64 �26
12 �50.78 �34.48 �26.26 �27
13 �51.28 �28.61 �36.35 �31
14 �43.71 �23.13 �34.46 �33
15 �55.82 �34.51 �27.02 �26
16 �51.28 �28.17 �36.35 �34
17 �46.61 �23.87 �29.14 �29
18 �42.53 �21.09 �50.72 �48
19 �52.85 �30.73 �39.09 �43
20 �39.25 �20.91 �42.32 �40
21 �52.01 �25.25 �39.22 �32
22 �48.93 �26.43 �32.49 �30
23 �43.25 �17.07 �38.40 �34
24 �45.10 �23.48 �50.81 �48

This journal is ª The Royal Society of Chemistry 2012
24 compounds (Fig. 8B). These results suggest that the LIE

models were not as accurate in predicting the biological activities

of the 14 novel compounds as observed for the MM-PB/SA DH

model. Table 3 shows the calculated van der Waals and elec-

trostatic energies for the compounds of the test set as well as the

predicted activities. It is obvious that the favourable van der

Waals energy of the most active compounds compensates the
rgies (kcal mol�1) obtained for a test set n ¼ 14, (DGLIE1) values predicted
(DGexp) experimental values

Prediction

-free DGLIE1 DGLIE2 pIC50 DGexp

.89 �6.46 �6.34 5.23 �7.11

.60 �6.38 �6.04 5.23 �7.11

.27 �6.54 �7.30 5.30 �7.21

.98 �6.80 �7.33 5.74 �7.80

.54 �6.91 �7.59 5.40 �7.34

.75 �7.02 �8.05 5.58 �7.59

.32 �7.19 �8.22 5.82 �7.91

.57 �6.73 �7.36 5.26 �7.15

.50 �7.61 �8.71 5.19 �7.05

.22 �6.30 �6.25 5.66 �7.69

.71 �6.94 �8.52 5.42 �7.36

.92 �6.94 �7.83 5.55 �7.54

.78 �7.21 �8.81 5.46 �7.41

.71 �6.75 �7.42 5.24 �7.12

Med. Chem. Commun., 2012, 3, 167–173 | 171
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Table 2 Overview of the electrostatics (DEele) and van der Waals (DEvdw) energies (kcal mol�1) obtained for a training set n ¼ 10, (DGLIE1) values
predicted with a fitting parameter g s 0, and (DGLIE2) with a fitting parameter g ¼ 0, (DGexp) experimental values

Cpd

Ligand-surrounding interactions/kcal mol�1 LIE models

Evdw-bound Evdw-free Eele-bound Eele-free DGLIE1 DGLIE2 pIC50 DGexp

1 �38.18 �18.70 �42.47 �36.73 �6.02 �6.03 4.21 �5.75
2 �43.98 �21.33 �32.62 �29.25 �6.73 �7.58 4.95 �6.74
3 �37.53 �17.54 �27.52 �25.35 �6.50 �6.83 5.04 �6.87
4 �39.78 �20.92 �38.92 �31.27 �5.71 �5.47 3.88 �5.29
5 �35.98 �20.19 �29.85 �26.03 �5.73 �5.03 4.39 �5.98
6 �38.91 �22.49 �23.74 �28.88 �6.84 �6.82 5.06 �6.90
7 �35.03 �18.20 �23.53 �25.21 �6.50 �6.36 4.69 �6.40
8 �36.34 �16.70 �34.04 �26.76 �5.86 �5.82 4.52 �6.16
9 �32.21 �17.21 �26.14 �28.36 �6.31 �5.80 4.70 �6.41
10 �35.95 �18.89 �25.20 �29.50 �6.83 �6.90 4.83 �6.59

Fig. 8 Correlation between experimental pIC50 and calculated DG

values for all 24 compounds. (A) LIE model 1 and (B) LIE model 2.
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unfavourable effects of the electrostatic interactions, causing that

the interaction is predominantly driven by van der Waals forces.
Conclusions

In the present study, novel thiobarbiturates were identified as

Sirt2 inhibitors through a combination of virtual screening,

binding free energy calculations and in vitro assaying. Docking
172 | Med. Chem. Commun., 2012, 3, 167–173
potential VS hits to the Sirt2 binding site and subsequently

carrying out MD simulations resulted in stable protein–ligand

complexes. Their binding affinities were computed with MM-PB/

SA and LIE approaches, respectively, in order to analyse the

efficiency of their obtained models. In the case of theMM-PB/SA

approach, two models either based on DG or DH were generated

for predicting the binding free energy of test set compounds. The

DH model showed an excellent predictive power, indicated by

a high correlation coefficient and low RMSE values. Addition-

ally, the model was able to correctly predict the activities of

thiobarbiturates which were more than 10-fold more active than

the ones included in the training set. So, even when the activity

range of initial training set molecules and the novel thio-

barbiturates used as the test set was quite different, theDHmodel

was able to predict the new compounds to be more active than

the original ones. Thus the model was not only able to predict the

data of compounds with similar activities, but also able to detect

more activities among the test set compounds. The DH MM-PB/

SA model also correctly predicted the two most active

compounds (14 and 17, Table 1). On the other hand, the DG

model gave a lower correlation coefficient for the training set and

also showed a reduced accuracy in predicting the activities of the

test set compounds. Thus, the inclusion of the entropic term did

not improve the statistical quality of the MM-PB/SA model.

The LIE models were also tested with the same dataset of Sirt2

inhibitor candidates. Two models were generated with either two

or three parameters. It was shown that the model derived from

the three-parameter equation gave higher correlation coefficients

and lower RMSE values of the training set in comparison to the

two-parameter model. Results revealed that the estimated

binding free energies using the two-parameter model are closer to

DGexp than using the three-parameter model. Moreover the

statistical values r2PRED and the correlation coefficient are also

slightly better for the two-parameter model. However, in

comparison to the MM-PB/SA DH model, the LIE models were

not able to accurately predict the 14 test set compounds.

In summary, we have successfully combined docking and

binding free energy calculations for finding, analysing and pre-

dicting binding affinities of new Sirt2 inhibitor candidates. The

models were able to identify novel, more potent thiobarbiturates

using a small training-set of 10 compounds. The computationally

less demanding LIE models were also able to estimate the

potency of the training set molecules, even with lower accuracy as
This journal is ª The Royal Society of Chemistry 2012
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the MM-PB/SA DH model. Sirtuin inhibitors with increased

potency are now optimized candidates for structure–activity

studies by bioguided organic synthesis and interesting drug

candidates for cancer and neurodegenerative disease.
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