
Fast and Accurate Predictions of Binding Free Energies

Using MM-PBSA and MM-GBSA

GIULIO RASTELLI, ALBERTO DEL RIO, GIANLUCA DEGLIESPOSTI, MIRIAM SGOBBA

Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183,
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Abstract: In the drug discovery process, accurate methods of computing the affinity of small molecules with a bio-

logical target are strongly needed. This is particularly true for molecular docking and virtual screening methods,

which use approximated scoring functions and struggle in estimating binding energies in correlation with experimen-

tal values. Among the various methods, MM-PBSA and MM-GBSA are emerging as useful and effective

approaches. Although these methods are typically applied to large collections of equilibrated structures of protein-

ligand complexes sampled during molecular dynamics in water, the possibility to reliably estimate ligand affinity

using a single energy-minimized structure and implicit solvation models has not been explored in sufficient detail.

Herein, we thoroughly investigate this hypothesis by comparing different methods for the generation of protein-

ligand complexes and diverse methods for free energy prediction for their ability to correlate with experimental val-

ues. The methods were tested on a series of structurally diverse inhibitors of Plasmodium falciparum DHFR with

known binding mode and measured affinities. The results showed that correlations between MM-PBSA or MM-

GBSA binding free energies with experimental affinities were in most cases excellent. Importantly, we found that

correlations obtained with the use of a single protein-ligand minimized structure and with implicit solvation models

were similar to those obtained after averaging over multiple MD snapshots with explicit water molecules, with con-

sequent save of computing time without loss of accuracy. When applied to a virtual screening experiment, such an

approach proved to discriminate between true binders and decoy molecules and yielded significantly better enrich-

ment curves.
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Introduction

Designing small molecules with desired biological activity has

long been a desirable but challenging goal. In principle, a deep

understanding of the biological structure and function of a target

macromolecule, combined with appropriate computational tools

able to model the interactions of potential ligands in the putative

binding site, would allow the prediction of biologically active

molecules before an experiment is made. In practice, the success

of the computational prediction is often hampered by the com-

plexity of biological macromolecules and by the partial ability

of commonly used drug design tools to accurately predict active

candidates. Therefore, advances in structure-based design

approaches and techniques are essential for accelerating and

improving the drug discovery and development process. One of

the more popular approaches is molecular docking, which is

able to screen and rank computationally a relatively large num-

ber of molecules into the active site of a target protein structure

in a reasonable amount of time.1–3 This is helpful to suggest

binding modes and prioritize compounds for biological assays to

discover new binders. Such docking methods evaluate the steric

and electrostatic complementarities of ligands with the biological

target in terms of energy scores derived from empirical equa-

tions. Although these methods have been significantly improved

in the last years by including additional energy contributions

and/or refining parameters in the scoring functions and by

enhancing conformational sampling, we are still far from having

docking tools that predict biologically active candidates in rea-

sonable agreement with experimental data.2,4 Docking scores

correlate only poorly with experimental affinities, as emphasized
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by the many false positive hits in typical virtual screenings. As

a matter of fact, it is becoming general opinion that docking

results need to be postprocessed with more accurate methods

before a selection of best candidates for biological testing is

made. Above all, improvements should be made in scoring func-

tions, for example, through better treatment of long-range elec-

trostatics, desolvation of binding species, as well as entropic

contributions. With various levels of accuracy and computational

expense, computational approaches which can take into account

such factors include free energy perturbation5 (FEP), thermody-

namic integration6 (TI), linear response7 (LR), molecular

mechanics Poisson-Boltzmann surface area (MM-PBSA), and

molecular mechanics-generalized Born surface area (MM-

GBSA).8,9 In particular, MM-PBSA and MM-GBSA combine

molecular mechanics and continuum solvent models to estimate

ligand binding affinities10 and are faster by several orders of

magnitude than FEP or TI. However, generating and postpro-

cessing an ensemble of representative protein-ligand snapshots

from molecular dynamics (MD) trajectories using these methods

still require computer-intensive calculations that are impractical

for virtual screening applications, in which a large number of

compounds need to be processed. If it were possible to reliably

estimate ligand affinity with MM-PB(GB)SA using a single

minimized protein-ligand structure instead of ensembles of snap-

shots derived from MD trajectories, this would undoubtedly con-

stitute a valuable method to rapidly refine and rescore docking

screening results. The validity of such an approach has been

explored only in few studies.11–15 In particular, Kuhn et al vali-

dated the MM-PBSA approach on different biological systems

by putting forward the idea of using single-minimized structure

instead of MD trajectories.13 Beyond that study, so far, no sys-

tematic and extensive comparisons of the performance of differ-

ent MD- and minimization-based methods for binding free

energy calculation that take into account also the possibility to

sample the structures with implicit solvent models has been car-

ried out.

In this article, we thoroughly investigate this hypothesis by

comparing the ability of different methods for the generation of

protein-ligand complexes and different methods for the calcula-

tion of binding free energies to correlate with experimental val-

ues. Regarding structures, these were generated with 2 ns peri-

odic boundary MD simulations in water as well as with four dif-

ferent energy-minimization methods in explicit or implicit water

solvent. With reference to free energy calculations, these were

performed with MM-PBSA and MM-GBSA methods imple-

mented in Amber16 and Delphi.17

The performance of these methods was extensively tested on

a series of twenty-two structurally diverse inhibitors of Plasmo-
dium falciparum Dihydrofolate reductase (PfDHFR) with known

binding mode and spanning seven orders of magnitude in bio-

logical activity.18–23 The results unequivocally show that the

correlation between experimental and calculated binding free

energies obtained from single energy-minimized structures is

excellent and fully comparable to that obtained using signifi-

cantly more time-consuming approaches like averaging over per-

iodic boundary MD simulations in water. In addition, this meth-

odology proved able to discriminate between true ligands and

decoys very well. Therefore, it provides a fast and reliable way

to predict binding affinities of structurally unrelated molecules

in correlation with experiments, and holds promise as a postpro-

cessing method to more accurately score and rank hit com-

pounds after docking screenings.

Computational Methods

The Ligands Data Set

A set of twenty-two inhibitors of PfDHFR were selected for our

study. The inhibitors were selected based on chemical diversity

and significant variation in biological activity.18–23 All inhibition

constants were determined in the same laboratory under the

same experimental conditions, and Ki values spans seven orders

of magnitude variation. The chemical diversity of the ligands

data set is represented by different families of compounds such

as pyrimidine-2,4-diamine compounds (Pyrimethamine analogs),

[1,3,5]triazine-2,4-diamine analogs (Cycloguanil analogs), urea,

thiourea, N-hydroxyamidine, and hydrazine inhibitors. Their

structures are reported in Table 1 along with the measured Ki

values. The pyrimethamine and cycloguanil derivatives 1a–1h

and 2a–2f were treated as protonated at the nitrogen N1, as

determined by NMR studies of DHFR-antifolate complexes24,25

and confirmed by crystal structures.18 All other inhibitors were

neutral. The molecular mechanics (MM) parameters for these

molecules (atom types and atomic charges) were assigned with

the antechamber module of Amber 9.26 In particular, the ligands

were assigned generalized amber force field27 (gaff) atom types

and AM1-BCC28 atomic charges calculated with the divcon pro-

gram. Missing force-field parameters were assigned with the

parmcheck utility.

The Protein-Ligand Complexes

The protein structure used in our investigation is the crystal

structure of wild-type Plasmodium falciparum DHFR in complex

with NADPH and the potent inhibitor WR9921018 (PDB code

1J3I), which is also included in our data set (compound 2f). The

structure was cut at residue Asn231, which corresponds to the

DHFR domain of the bifunctional DHFR-TS structure. Of the

dimer, unit B was chosen because it has fewer missing residues

(Met1 and residues from Asp87 to Asn90). Met1 was built as in

unit A. Residues from Asp87 to Asn90 were modeled with Mod-

eller 829 by aligning the complete sequence of the protein with

that of the X-ray structure 1J3I. Ten homology models were

generated and the best model according to Prosa II30 was saved;

then, the coordinates of the four missing residues were inserted

back into the original crystal structure in order to fill the gap.

The WR99210 ligand was removed from the structure, and

the inhibitor structures were built and manually docked into the

PfDHFR crystal structures. The pyrimidine-2,4-diamine ligands

1a-1h and the [1,3,5]triazine-2,4-diamine ligands 2a-2f were

positioned according to the established binding modes of pyri-

methamine, cycloguanil, and WR99210 as determined from

crystal structure and modeling.18,21 In these structures, the proto-

nated N1 and the N6-amino groups form bidentate hydrogen

bonds with the conserved Asp54 residue of the active site. The

initial orientations of the remaining inhibitors (3a–3d, 4a–4c,
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and 5a) were taken from our previous work.22 All water mole-

cules in the crystal structure were removed except for two con-

served waters embedded into the protein (W1249 and W1250 in

the original 1J3I crystal structure) and close to the important resi-

due Asp54. These two water molecules were maintained for the

generation of structures with MM and MD in explicit and implicit

solvent (see below), but removed for free energy calculations.

Hydrogens were added to the complexes using the internal

coordinates of the Amber all-atom data base. All Lys and Arg

residues were positively charged and Glu and Asp residues

Compound Structure Ki (nM)

1a (Pyr) 0.6

1b 0.3

1c 0.4

1d 0.6

1e 2.4

1f 2

1g 41.9

1h 10.9

2a(Cyc) 1.5

2b 1.8

2c 20

Table 1. Chemical Structures of the PfDHFR Inhibitors Used for Free Energy Analyses and Their Experimental

Inhibition Constants (Ki nM).

Compound Structure Ki (nM)

2d 329

2e 270

2f (WR99210) 0.011

3a 9700

3b 5200

3c 900

3d 11,300

4a 2400

4b 102,000

4c 77,200

5a 3600
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negatively charged. The parameters of the NADPH cofactor

were taken from our previous simulations.21

All calculations in this study were performed with Amber 926

suite of programs and the ff0331 force field for the protein and

the gaff27 force field for the ligands.

Structures Generated with Periodic Boundary MD

Simulations in Water

Each protein-ligand complex was solvated in an octahedral box

of TIP3P32 water molecules extending 5Å outside the protein on

all sides, resulting in more than 8200 waters added per complex.

The electrostatics were treated with the particle-mesh Ewald33,34

method with a grid size of 723 Å, a fourth-order B-spline inter-

polation, and a tolerance of 10-5. The sander module of Amber

9 was used for these simulations. The simulations used a resi-

due-based cutoff of 8 Å, a time step of 2 fs and a constraint of

bond lengths involving hydrogen atoms using the SHAKE35

algorithm. The nonbonded pair list was updated every 50 fs. The

solvated complexes were minimized with 2000 steps of conju-

gate gradient minimization and equilibrated with MD at 300 K

as follows: firstly, 20 ps MD at constant volume with 1 kcal

mol–1 Å–2 restraint on the protein, NADPH and the ligand were

performed in order to equilibrate the temperature around 300 K

without undesirable drifts of the structures; secondly, MD was

continued under constant pressure conditions (1 atm) for 50 ps

with 1 kcal mol–1 Å–2 restraint on the same atoms, followed by

additional 20 ps MD with reduced (0.5 kcal mol–1 Å–2)

restraints. Then, the complexes were equilibrated for 2 ns with-

out restraints. After equilibration, to assess free energy conver-

gence, four consecutive production runs the length of 500 ps

each were performed and coordinates were extracted every 5 ps,

resulting in a hundred snapshots collected for each run and a

total of four hundred snapshots collected for each compound.

The coordinates were also averaged every 10 ps for visual

inspection to make sure that the orientation of the inhibitor and

the conformation of the protein did not change significantly dur-

ing MD. Root mean squared deviation (RMSD) analyses were

performed using the ptraj module of Amber 9. Mass-weighted

RMSD values of protein-ligand complexes sampled by MD have

been calculated relatively to the initial crystal structure.

Structures Generated with Molecular Mechanics

Energy Minimization

In addition to the protein-ligand complexes generated with peri-

odic boundary MD simulations in water, four other sets of struc-

tures were obtained with less time-consuming MM energy-mini-

mization methods, namely (i) minimization in explicit water sol-

vent with a octahedral box of water molecules, (ii) minimization

in implicit solvent model with GBSA, (iii) minimization with a

distance-dependent dielectric function, and (iv) minimization

with a protocol consisting in distance-dependent dielectric mini-

mization followed by molecular dynamics on the ligand and

final reminimization.

Energy minimizations of the protein-ligand complexes were

performed using the sander module of Amber 9. Regarding sim-

ulations in explicit solvent, each complex prepared as described

before was solvated in an octahedral box of TIP3P32 water mol-

ecules extending 5 Å outside the protein on all sides, resulting

in more than 8200 waters added. The solvated complexes were

minimized with 2000 steps of conjugate-gradient minimization

without restraints, using the same conditions and parameters

reported in the previous paragraph for periodic boundary simula-

tions. 2000 steps of minimization proved sufficient to obtain sta-

ble free energy results in explicit and implicit water models

because longer minimization tests resulted in similar binding

free energies. Simulations in implicit solvent were performed

with GBSA. At this purpose, 2000 steps of conjugate-gradient

minimization were performed with the Tsui and Case parameters

(igb 5 1, viz GBHCT model in the original paper36,37), the sur-

face area was computed and included in the solvation term, and

a cutoff of 18 Å for nonbonded interactions was used. The third

set of structures was obtained by 2000 steps of minimization

with a distance-dependent dielectric constant e 5 4r, and a cut-

off of 12 Å. Finally, a multistep protocol consisting in 2000

steps of minimization on the entire complex, followed by 100 ps

molecular dynamics in which the ligand alone was allowed to

move, plus a final reminimization of the complex (2000 steps),

was set up using distance-dependent dielectric constant condi-

tions. When compared with single energy minimization, this pro-

tocol adds a molecular dynamics stage for the refinement of the

orientation and conformation of the ligand which was specifi-

cally devised for relieving possibly incorrect assignments of

ligand poses resulting from automated docking tools used in vir-

tual screenings. MD on the ligand was performed at 300 K, with

SHAKE35 turned on for bonds involving hydrogens, allowing a

time-step of 2.0 fs.

After each energy minimization, visual inspection of the

complexes was performed to make sure that the protein and the

ligand remained close to conformation observed in the crystal

structures.

MM-PBSA and MM-GBSA Calculations

The values of the free energy of binding (DGbind) of each inhibi-

tor were calculated according to the equation

DGbind ¼ Gcom � Grec � Glig (1)

where com, rec, and lig stand for complex, receptor, and ligand,

respectively. The free energy of each of these was estimated as

a sum of the four terms

G ¼ hEMMi þ hGpsolvi þ hGnpsolvi � ThSi (2)

where EMM is the molecular mechanics energy of the molecule

expressed as the sum of the internal energy of the molecule plus

the electrostatics and van der Waals interactions, Gpsolv is the

polar contribution to the solvation energy of the molecule,

Gnpsolv is the nonpolar solvation energy, T is the absolute tem-

perature, and S is the entropy of the molecule.

The snapshots for MM-PBSA and MM-GBSA analyses were

taken every 5 ps of each of the four 500 ps MD production

runs, resulting in a total of four hundred snapshots per
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compound analyzed. The energies were obtained using the

mm_pbsa module of Amber 9. The internal, electrostatics and

van der Waals energies were calculated with the sander module,

with no cutoff for non-bonded interactions. The polar solvation

free energies (Gpsolv) were calculated by solving the Poisson

Boltzmann (PB) equation with both Delphi17 and the Amber

PBSA16 module, and by the generalized Born (GB)

approach37,38 implemented in Amber 9. In Delphi, the grid spac-

ing was set to 0.5 Å, with dielectric constants of 1 and 80 for

the interior and exterior of the molecule, respectively. A cubic

lattice with the largest dimension 80% filled by the longest

dimension of the molecule was used. The dielectric boundary

was defined using a 1.4 Å probe water on the atomic surface.

The PB equation was solved using 1000 linear steps of finite dif-

ference. The Parse39 set of radii was used for atoms of the mole-

cule plus radii of 1.75 and 1.948 Å for F and Cl, respectively,

which were taken from the Amber ff03 force field. Delphi calcu-

lations were performed using the same atomic charges used to

minimize the complexes, that is, the standard Amber charges

(ff03)31 for the protein and the AM1-BCC28 charges for the

cofactor and the ligands. In Amber PBSA, we used the Poisson-

Boltzmann solver implemented in Amber 9 with the parameters

already described for Delphi, with atomic cavity radii and

atomic charges (ff03) taken from the topology files. Finally,

energy estimations with GBSA were made with the Tsui and

Case36 parameters (igb 5 1) and ff03 charges, with the same

values of dielectric constants used for PB. All calculations used

a solute internal dielectric constant equal to 1. However, to test

the dependence of free energies on this parameter, calculations

were also performed using increasing values of e (2, 4, 10, and

25). These tests were carried out solely using the energy-mini-

mized structures of the protein-ligand complexes in water, and

the results were reported as Supporting Information.

The nonpolar solvation term (Gnpsolv) was calculated from

the solvent-accessible surface area (SASA)40 using the equation

Gnpsolv ¼ c SASAþ b (3)

where SASA was determined with the Molsurf40 method using a

probe radius of 1.4 Å. Parameters were c5 0.00542 kcal mol–1 Å–2

and b 5 0.92 kcal mol–1 to be used in combination with Delphi

polar solvation energies and Parse radii, and c 5 0.0072 kcal

mol–1 Å–2 and b 5 0 kcal mol–1 to be used with Amber PB or

GB polar solvation energies. The values of these parameters are

well documented in literature.10–13

Finally, the change in solute entropy during ligand associa-

tion was estimated by a normal mode analysis41 of the vibration

frequencies, calculated with the nmode module of Amber. Entro-

pies were calculated using the entire protein-ligand complexes.

Before normal mode calculations, the complexes were energy-

minimized with a distance-dependent dielectric constant e 5 4r
using a maximum of 40,000 steps and a target root-mean-square

gradient of 10–4 kcal mol–1 Å–1. Tests performed with tighter

convergence criteria (60,000 steps and a target rms of 10–5 kcal

mol–1 Å–1) made on a subset of compounds showed that TDS
values did not differ for more than 0.2 kcal mol–1, that is,

energy minimization with the chosen settings was sufficient to

guarantee achievement of a true minimum (data not shown).

Because of the high computational cost, we selected 20 regularly

spaced snapshots along the 2 ns production trajectory for en-

tropy calculations. Such a number of snapshots is in line with

previous investigations.9,10,12,42 The entropic contribution to

binding was calculated only for the 2 ns periodic boundary MD

simulations in water.

Virtual Screening Protocol

The performance of MM-PBSA and MM-GBSA were further

evaluated by setting up a virtual screening experiment. To assess

the ability to discriminate between true ligands and decoys, we

used the DHFR benchmarking data set developed by Shoichet

and Irwin,43 which has been downloaded from the directory of

useful decoys (DUD) at blaster.docking.org/dud. The DHFR data

set is composed of 201 known ligands and 7150 decoys with

similar physical properties (e.g., molecular weight, hydrogen

bond donors and acceptors, log P, etc.) but with chemical and

topological differences, so that they are unlikely to be binders.

The data set was docked into the DHFR crystal structure with

AutoDock 4.44 The Lamarckian genetic algorithm (LGA) was

applied to model the interaction of the molecules with the pro-

tein. The docking area was defined using the AutoDock module

ADT. The grid site was constrained to a 22.5 Å cubic space cen-

tred on the inhibitor WR99210, using a grid point spacing of

0.375 Å. For each molecule, 10 runs were carried out with 150

individuals in the first population and 2.5 million energy evalua-

tions. The resulting protein-ligand and protein-decoy complexes

were energy-minimized with Amber and further processed with

MM-PBSA and MM-GBSA using our recently described auto-

mated workflow called BEAR (Binding Estimation After Refine-

ment).45 BEAR automatically and iteratively prepares ligand and

receptor input files, assign Amber parameters and performs a

multistep procedure consisting in energy minimization, molecu-

lar dynamics simulation in which only the ligand is allowed to

move, and a final reminimization of the complex. Then, the sin-

gle structure of each refined complex is used to estimate the free

energy of binding through MM-PBSA and MM-GBSA algo-

rithms, with parameter settings already described in this work.

The lowest-energy orientation of the largest cluster found by

AutoDock was used as input for the BEAR refinement and

rescoring. After BEAR, the enrichment curves according to the

AutoDock, MM-PBSA, and MM-GBSA scoring functions were

calculated and compared.

Results and Discussion

In this investigation, we have explored different simulation pro-

tocols for their ability in predicting free energies of binding of a

set of structurally diverse Plasmodium falciparum DHFR inhibi-

tors with known binding mode and experimental activities (Ta-

ble 1).18–23 Different methods for predicting binding free ener-

gies (Delphi, Amber PBSA, and Amber GBSA) as well as

diverse methods for generating the structures of the protein-

ligand complexes (periodic boundary MD simulations in water

or less time-consuming MM energy minimizations in explicit
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water, implicit water with GBSA, and distance-dependent dielec-

tric constant e 5 4r) have been explored. The accuracy and

model dependency of these methods has been assessed and com-

pared. Binding free energies of each inhibitor have been com-

puted both with (DGbind) and without (DG0
bind) the inclusion of

the entropic term:

DG0
bind ¼ DEMM þ DGsolv (4)

DGbind ¼ DEMM þ DGsolv � TDSsolute (5)

where DEMM is the molecular mechanics contribution expressed

as the sum of the internal, electrostatic, and van der Waals con-

tributions to binding in vacuo, DGsolv is the solvation free

energy contribution to binding expressed as the sum of polar

and nonpolar solvation free energies (DGsolv 5 DGpsolv 1
DGnpsolv, respectively), and TDSsolute is the contribution of solute

entropy to binding.

Free Energies of Binding Using Structures Generated with

Periodic Boundary MD Simulations in Water

Binding free energy predictions were firstly performed on an en-

semble of structures of protein-ligand complexes generated with

2 ns periodic boundary MD simulations in water. The average

free energy results are given in Table 2. To assess convergence

of the free energy results, the 2 ns production run was also di-

vided into four consecutive 500 ps MD trajectories and free

energies were calculated separately for each subset. Comparison

of mean values and standard deviations of free energies obtained

from each subset (Tables 1S–3S available as Supporting Infor-

mation) suggests that free energies have reasonably converged.

It is worth noting that, while Kuhn and other researchers pointed

out that the use of longer MD trajectories may introduce addi-

tional uncertainties to the free energy estimation,13 we observe a

consistency of the results among the four consecutive steps of

500 ps. Even if 2 ns MD simulations are rather short for pro-

teins, this behavior can be explained on account of the well

defined binding mode of the ligands in the DHFR binding

pocket that imply few important structural rearrangements dur-

ing molecular dynamics. Another reason is the choice of initial

structures that, as described in the computational method sec-

tion, are chosen in order to reproduce the crystallographic con-

formation that notably describe particularly favorable ligand-

receptor interactions. As a matter of fact, the averaged root

mean squared deviations (RMSD) between the structures

sampled in the 2 ns MD in water and the X-ray structure (Table

4S in Supporting Information) show that the systems undergo

dynamic changes as compared to the crystal structure. The

RMSD values of the backbone atoms of the entire protein

(overall fluctuations) and of the residues at a distance �8 Å

from the inhibitor (binding site fluctuations) are �2 and �1 Å,

respectively. Therefore, although MD indeed resulted in struc-

tural fluctuations of the complexes, which occur also in proxim-

ity of the binding site, these did not impair the overall binding

mode and the most representative structures remained generally

consistent with the crystallographic ones. Moreover, visualiza-

tion of the structures of the protein-ligand complexes along the

trajectory confirmed that the ligands themselves did not undergo

important conformational changes during MD. These findings

are also consistent with the rather low standard deviations of

DG0
bind values reported in Table 2. To further probe, the depend-

ency of the free energy results on the simulation length, for two

compounds (1a and the more flexible 2f with six rotatable

bonds) we also performed longer (10 ns) MD simulations. In

comparison with the 2 ns results, the DG0
bind values obtained

with the 10 ns simulations (included in Table 2 as footnotes)

differed for only 1.6 (MM-PBSA) and 1.0 (MM-GBSA) kcal

mol–1 for compound 1a and 2.6 (MM-PBSA) and 2.2 (MM-

GBSA) kcal mol–1 for compound 2f.

As expected, the gas-phase interaction energies (Table 2,

DEMM) are scarcely correlated with the experimental free ener-

gies of binding (r2 5 0.56) since the inclusion of additional

terms such as desolvation energies are crucial for predicting

binding affinities in correlation with experiments. The nonpolar

solvation free energies calculated with Molsurf (Table 2) show

that DGnpsolv values are always negative, that is, favorable to

binding. Besides polar interactions established with the key resi-

due Asp54 and backbone oxygen atoms of Ile14 and Ile164 of

PfDHFR, hydrophobic interactions with Ala16, Phe58, Met55,

and Leu46 also contribute favorably to binding affinity.18,21

Polar solvation free energies (DGpsolv) have been calculated

with Delphi, Amber PB and GB and the results are included in

Table 2. According to all three methods, DGpsolv values are posi-

tive, that is, the molecules must pay a desolvation penalty upon

protein binding. However, differences in absolute values are

somewhat remarkable among the three methods, and a trend

Delphi [ Amber PB [ Amber GB can be clearly identified

(Table 2).

The estimated free energies of binding DG0
bind without the

entropic contribution are reported in Table 2. Figures 1A–1C

shows the regression plots of the experimental vs. computed DG
of binding according to Delphi, Amber PBSA, and GBSA. The

computed DG0
bind and the experimental DGexpt values were sig-

nificantly correlated (Delphi r2 5 0.75, s 5 1.4, F 5 61; Amber

PBSA r2 5 0.93, s 5 0.77, F 5 248; Amber GBSA r2 5 0.93,

s 5 0.72, F 5 286, Figs. 1A–1C). The use of two DG0
bind values

calculated from the 10 ns instead of the 2 ns MD simulation

(compounds 1a and 2f) had a negligible effect on the quality of

the correlation. Therefore, despite the relatively large approxi-

mations inherent to the methodology, our converged free energy

estimates reproduced the experimental trend very well. In repro-

ducing binding free energies, Amber PBSA and GBSA

performed significantly better than Delphi, which is often con-

sidered one of the most accurate methods for estimating polar

solvations.12 Given that Delphi is also significantly more time-

consuming than Amber PBSA or GBSA, the results obtained on

our training set highlight that the latter approaches are faster and

even more accurate.

Entropic Contribution

The entropic contribution to binding (TDS) was estimated by a

normal mode analysis of the vibration frequencies performed af-

ter energy-minimization of twenty equally spaced snapshots
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Figure 1. Correlation between experimental and estimated free energies of binding (kcal mol–1). Free

energies were obtained after 2 ns periodic boundary MD simulations in water (A–C), minimization

with explicit water (D–F), minimization with GBSA (G–I), minimization with distance-dependent

dielectric constant e 5 4r (J–L), and a multistep minimization-MD-reminimization protocol with dis-

tance-dependent dielectric constant (M–O). Solvation free energies were evaluated with Delphi (plots

A, D, G, J, M), Amber PBSA (plots B, E, H, K, N), and Amber GBSA (plots C, F, I, L, O).
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taken along the 2 ns MD production described above, and the

results are included in Table 2. TDS values are dominated by the

translational and rotational contributions (�–23 kcal mol–1),

whereas their variation is caused by the vibrational contribution.

Moreover, because TDS values are significantly negative, their

inclusion into DG0
bind to account for entropic effects on binding

(DGbind 5 DG0
bind – TDS) has a high impact on the computation

of absolute free energies. With the TDS term, DGbind values

become closer to the experimental DGexpt values when compared

with DG0
bind, but differences between computed and experimental

values remain generally high (on average 12 kcal mol–1 for Del-

phi, 7 kcal mol–1 for Amber PBSA and 16 kcal mol–1 for Amber

GBSA) and, therefore, none of the three methods can be

regarded as able to quantitatively reproduce absolute binding

free energies under the chosen simulation conditions. In addi-

tion, we found that the inclusion of the entropic term signifi-

cantly reduced the correlation with the experimental affinities,

with reduction of r2 values compared with the plots shown in

Figures 1A–1C and detection of at least two or three outliers per

plot (data not shown). We may therefore conclude that the

entropic contribution, as estimated in the reported conditions,

does not help in achieving quantitative predictions of absolute

binding free energies and it also worsens the agreement with the

ranking of binding affinities observed experimentally, which was

already very good. Furthermore, TDS is by far the contribution

with the largest standard deviations (�8 kcal mol–1 as opposed

to �3 kcal mol–1 for DEMM, �2 kcal mol–1 for DGsolv and less

than 2 kcal mol–1 for DG0
bind, Table 2), highlighting that the

inclusion of such term in DG also significantly increases uncer-

tainty. Indeed, it is important to note that such behavior is likely

to be an effect of not sampling adequately the configuration

space of the protein in entropy calculations. However, owing to

the huge computational resources required by normal mode anal-

ysis simulations, a deeper sampling of the configuration space

would be definitely impractical to postprocess docking screening

results. Therefore, we can conclude that the inclusion of inaccu-

rate entropy estimates in DG may harm more than completely

neglecting this term. Moreover, uncertainties may come also

from parts of the protein that are well beyond the binding site of

the ligand, and proteins exhibiting much more flexibility than

pfDHFR may exhibit even bigger discrepancies. Obviously,

these conclusions apply to our training set and simulation condi-

tions. In other applications, it has been shown that enthalpy/en-

tropy compensation46 is important to understand and reliably

predict binding energies, and that the omission of entropies leads

to an overestimate of binding affinities and degrades the correla-

tion with experimental binding energies.47,48 Thus, incorporation

of solute entropy in binding affinity calculations remains an im-

portant but daunting challenge for which improvements are

needed in future research.49

Free Energies Using Single Energy-Minimized Structures

Although free energy predictions are usually made on large col-

lections of equilibrated structures sampled during MD in water

as performed above, we were interested in testing whether a sin-

gle minimized structure was a reasonable approximation for rap-

idly estimating ligand binding energies. This approach is a

priori a simplification because free energies reflect all configura-

tional states populated by the system at a given temperature.

However, generating a single minimized structure of a protein-

ligand complex and estimating the DG of binding from one

structure is fast, and therefore suitable for high-throughput vir-

tual screening studies. Moreover, previous studies show that the

use of a single bound conformation may give promising

results.13 To thoroughly test this hypothesis, we have performed

binding free energy predictions using energy-minimized struc-

tures generated with four different methods. Table 3 reports the

free energy results obtained using the various minimization and

free energy methods. Again, none of the methods could repro-

duce the absolute DGexpt values quantitatively. However, corre-

lations between computed DG0
bind and experimental DGexpt val-

ues were still very good (Figure 1). Importantly, with single

energy-minimized structures, we achieved correlations with sta-

tistical quality in all similar to those obtained using the more

time-consuming approach based on generation and analysis of

MD ensemble of structures in water. Despite the approximation

of retaining a single protein-ligand structure, we may explain

this by considering that this conformation significantly contrib-

utes and thus dominates the Boltzmann-averaged potentials for

the free energy estimation. This is particularly true when the

bound conformation of the ligands corresponds to a particularly

stable conformation of the free ligand. Therefore, in such situa-

tion the ligand is already arranged to achieve a good binding

with the protein and the energetic penalties coming from the

conformational strains and the entropic contribution play a

minor role.47 Figures 1D–1F shows the regression plots obtained

with structures minimized in explicit water solvent (Delphi r2 5
0.90, s 5 0.90, F 5 172; Amber PBSA r2 5 0.93, s 5 0.75,

F 5 262; Amber GBSA r2 5 0.91, s 5 0.83, F 5 207). Struc-

tures generated after minimization with the implicit solvent

model GBSA still yielded significant relationships between

DG0
bind and DGexpt values, especially when free energies were

evaluated with Amber GBSA (Delphi r2 5 0.88, s 5 0.98, F 5
144; Amber PBSA r2 5 0.85, s 5 1.09, F 5 113; Amber

GBSA r2 5 0.93, s 5 0.75, F 5 258, Figs. 1G–1I). When com-

pared with energy-minimization in water, structures minimized

with GBSA gave slightly lower regression coefficients when free

energies of binding were evaluated with Delphi (0.88 vs. 0.90)

or Amber PBSA (0.85 vs. 0.93), and these were only slightly

better when evaluated with Amber GBSA (0.93 vs. 0.91). Nota-

bly, GBSA minimization was, on average, seven times slower

than minimization in water (see next paragraph for a description

of simulation times) and did not give better results. Free energy

evaluations were then carried out on structures minimized with a

distance-dependent dielectric constant e 5 4r, a fast minimiza-

tion protocol of protein-ligand complexes. The best correlation

between DG0
bind and DGexpt values (Figs. 1J–1L) was observed

with Amber GBSA (r2 5 0.91, s 5 0.86, F 5 191), followed

by Amber PBSA (r2 5 0.85, s 5 1.08, F 5 115) and Delphi

(r2 5 0.81, s 5 1.21, F 5 87). Importantly, such relationships

are similar to those obtained using explicit water or GBSA mini-

mization, suggesting that free energy predictions using these

structures still lead to significant correlation with experiment.

Notably, minimization with distance-dependent dielectric con-

stant is, on average, four times faster than minimization in
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Table 3. Free Energies (kcal mol21) According to Delphi, Amber PBSA, and GBSA Calculations Performed

on Structures Generated with Minimization in Explicit Water Solvent, GBSA, Distance-Dependent

Dielectric Function, and Minimization-MD-re-minimization with Distance-Dependent Dielectric Function.

n8 DGexpt DEMM DGsolvDelphi DGsolvPBSA DGsolvGBSA DG0
bindDelphi DG0

bindPBSA DG0
bindGBSA

Minimization in explicit water solvent

1a 212.7 299.4 68.7 47.6 37.5 230.8 251.8 262.0

1b 213.1 2100.6 68.8 47.5 37.4 231.8 253.1 263.2

1c 212.9 299.4 70.8 48.2 38.1 228.6 251.2 261.3

1d 212.7 2104.4 71.3 51.1 38.7 233.1 253.4 265.8

1e 211.8 296.2 71.7 50.3 40.5 224.5 245.9 255.7

1f 211.9 295.9 67.9 46.9 37.3 228.1 249.0 258.6

1g 210.1 293.3 72.5 50.7 41.3 220.8 242.6 252.0

1h 210.9 292.9 67.8 47.9 38.3 225.1 245.1 254.6

2a 212.1 2100.2 71.1 48.9 38.4 229.0 251.3 261.7

2b 212.0 299.6 71.2 48.7 38.5 228.4 250.9 261.1

2c 210.6 296.3 67.5 49.0 38.4 228.8 247.4 257.9

2d 28.9 294.1 71.3 52.5 41.8 222.8 241.5 252.3

2e 29.0 295.6 72.1 52.6 41.8 223.5 243.0 253.8

2f 215.0 2107.7 71.3 47.7 37.4 236.4 259.9 270.3

3a 26.9 274.9 59.5 45.8 34.6 215.5 229.1 240.3

3b 27.3 268.5 51.5 42.1 31.4 217.0 226.4 237.1

3c 28.3 260.6 42.4 34.3 26.2 218.2 226.4 234.4

3d 26.8 267.5 55.4 46.2 29.2 212.2 221.3 238.4

4a 27.7 252.2 32.1 25.7 16.8 220.1 226.5 235.4

4b 25.5 248.3 37.9 34.7 24.5 210.4 213.6 223.8

4c 25.6 247.5 31.0 30.7 18.9 216.6 216.9 228.6

5a 27.5 271.3 58.6 40.4 34.3 212.8 230.9 237.1

Minimization with GBSA

1a 212.7 287.0 59.0 37.7 22.2 228.0 249.4 264.9

1b 213.1 286.9 60.4 38.7 22.0 226.5 248.2 264.9

1c 212.9 288.0 62.3 39.8 23.5 225.7 248.2 264.4

1d 212.7 284.8 62.7 39.8 20.6 222.1 245.0 264.2

1e 211.8 286.3 63.5 40.5 26.9 222.8 245.8 259.4

1f 211.9 286.8 62.9 37.2 24.0 223.9 249.5 262.8

1g 210.1 282.7 62.4 41.0 27.0 220.3 241.7 255.6

1h 210.9 282.8 58.7 37.3 24.1 224.1 245.5 258.7

2a 212.1 288.4 62.2 38.7 23.7 226.2 249.7 264.7

2b 212.0 290.0 63.3 39.6 25.2 226.7 250.3 264.8

2c 210.6 285.7 58.0 36.1 24.0 227.7 249.6 261.7

2d 28.9 283.6 65.8 41.8 27.7 217.8 241.8 255.9

2e 29.0 284.8 66.5 41.8 27.5 218.3 243.0 257.3

2f 215.0 2105.2 68.3 46.3 24.4 237.0 259.0 280.8

3a 26.9 273.1 62.2 55.4 32.5 210.9 217.8 240.7

3b 27.3 276.1 68.8 56.3 32.9 27.3 219.8 243.2

3c 28.3 269.9 55.5 51.5 25.6 214.4 218.3 244.3

3d 26.8 263.0 65.0 56.8 20.8 2.1 26.2 242.2

4a 27.7 260.4 47.4 48.2 17.2 213.0 212.2 243.2

4b 25.5 254.4 58.0 58.9 26.1 3.6 4.4 228.3

4c 25.6 256.2 57.6 55.7 20.6 1.4 20.5 235.6

5a 27.5 245.8 35.9 22.9 8.2 29.9 223.0 237.6

Minimization with distance-dependent dielectric constant 4r

1a 212.7 273.9 55.0 35.1 16.1 218.8 238.8 257.8

1b 213.1 273.1 53.2 34.0 15.5 219.9 239.0 257.6

1c 212.9 276.2 56.6 36.6 18.7 219.6 239.6 257.4

1d 212.7 278.1 60.6 37.4 17.3 217.6 240.8 260.8

1e 211.8 272.9 57.7 37.5 20.7 215.2 235.4 252.2

1f 211.9 272.5 56.6 33.9 17.8 215.9 238.6 254.7

1g 210.1 271.3 58.4 38.8 22.2 213.0 232.6 249.2

1h 210.9 270.2 55.4 34.1 19.0 214.8 236.1 251.2

2a 212.1 273.2 55.0 32.9 17.3 218.2 240.3 255.9

(Continued)
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water. For all methods used to generate structures, binding free

energies estimated with Amber PBSA and GBSA resulted in

better correlations to experiments if compared to the Delphi

method. Moreover, although binding free energies estimated

with GBSA proved to be the less sensible to the method used to

generate structures, PBSA gave slightly lower r2 values when

structures were generated without explicit water.

Finally, we tested the effect of introducing a short molecular

dynamics step for the refinement of the orientations of the ligand

in the complex. Accordingly, complexes were minimized with

distance-dependent dielectric function, MD was performed on

the ligand alone, and the structures of the complexes were remi-

nimized after MD. The motivation behind this is that an inter-

mediate MD step can help to relieve possible incorrect ligand

conformations and/or orientations assigned by automated dock-

ing tools. In fact, while the inhibitors in our training set have

known binding modes, typical applications in virtual screening

should deal with the fact that docking tools in some cases fail to

predict ‘‘correct’’ solutions.4 Such an approach has been imple-

mented in an automated workflow named BEAR (Binding Esti-

mation After Refinement),45 that automatically and iteratively

prepares ligand, receptor, and complex topologies, performs

structural refinement with Amber and evaluates binding free

energies with MM-PBSA and MM-GBSA, using the settings

described in this work. Free energies of binding estimated using

these last structures were remarkably similar to those obtained

with simple energy minimization (Table 3). Regression plots are

given in Figures 1M–1O (Delphi r2 5 0.81, s 5 1.23, F 5 84;

Amber PBSA r2 5 0.87, s 5 0.99, F 5 140; Amber GBSA

r2 5 0.91, s 5 0.84, F 5 203). This result was expected consid-

ering that our ligands already have correct initial orientations

and conformations, but it is important to ascertain that the appli-

cation of the intermediate MD refinement step does not alter

free energy predictions. It is worth noting that in this work we

Table 3. (Continued)

n8 DGexpt DEMM DGsolvDelphi DGsolvPBSA DGsolvGBSA DG0
bindDelphi DG0

bindPBSA DG0
bindGBSA

2b 212.0 278.1 55.0 34.2 21.1 223.1 243.9 257.1

2c 210.6 274.7 52.1 33.8 19.9 222.6 241.0 254.8

2d 28.9 273.2 63.8 40.1 23.8 29.4 233.1 249.4

2e 29.0 274.2 62.7 39.2 23.5 211.6 235.1 250.7

2f 215.0 297.5 69.0 44.3 21.0 228.5 253.2 276.5

3a 26.9 273.3 66.1 58.3 33.1 27.2 215.0 240.2

3b 27.3 272.0 68.5 58.9 32.0 23.5 213.2 240.0

3c 28.3 267.5 60.6 54.0 25.3 26.8 213.5 242.1

3d 26.8 259.3 67.7 59.3 21.8 8.4 0.0 237.6

4a 27.7 259.9 55.5 52.6 17.4 24.3 27.3 242.4

4b 25.5 260.0 69.6 67.2 32.0 9.6 7.2 228.0

4c 25.6 258.0 53.2 51.4 22.8 24.8 26.5 235.2

5a 27.5 242.6 43.1 26.8 8.7 0.4 215.8 234.0

Minimization/MD/re-minimization with distance-dependent dielectric constant 4r
1a 212.7 275.2 56.8 36.6 17.3 218.5 238.6 258.0

1b 213.1 274.5 54.7 35.6 16.7 219.9 238.9 257.8

1c 212.9 278.2 58.2 38.9 20.4 220.0 239.3 257.8

1d 212.7 280.6 63.1 39.5 19.3 217.5 241.2 261.3

1e 211.8 273.4 58.8 37.6 21.2 214.6 235.8 252.2

1f 211.9 273.4 57.5 34.8 18.7 215.9 238.6 254.7

1g 210.1 272.0 61.6 39.5 22.8 210.4 232.5 249.2

1h 210.9 270.8 56.9 35.5 19.6 213.9 235.3 251.2

2a 212.1 273.5 55.6 33.7 17.7 217.9 239.8 255.8

2b 212.0 278.8 54.7 35.6 21.7 224.1 243.2 257.1

2c 210.6 275.2 54.6 34.3 20.5 220.7 240.9 254.8

2d 28.9 272.8 59.2 39.9 23.3 213.6 232.9 249.4

2e 29.0 271.0 60.1 39.4 21.7 211.0 231.7 249.4

2f 215.0 298.2 69.8 43.9 21.5 228.5 254.3 276.7

3a 26.9 273.3 65.9 58.6 33.5 27.4 214.7 239.8

3b 27.3 272.3 65.8 59.9 32.1 26.5 212.4 240.2

3c 28.3 265.6 58.0 50.0 24.5 27.6 215.5 241.1

3d 26.8 259.6 65.3 59.3 17.9 5.7 20.4 241.8

4a 27.7 261.5 54.2 51.7 17.8 27.3 29.8 243.7

4b 25.5 264.0 79.2 66.9 33.4 15.2 2.9 230.6

4c 25.6 267.9 72.9 68.4 32.9 5.0 0.5 234.9

5a 27.5 248.3 45.3 26.4 11.5 26.9 221.9 236.8

807Fast and Accurate Predictions of Binding Free Energies

Journal of Computational Chemistry DOI 10.1002/jcc



did not test the effect of starting MD calculations from ligand

orientations different from the crystallographic ones. The assess-

ment of the ‘‘correct’’ binding mode of a ligand in a protein

pocket was out of the scope of this work, and further validations

regarding conformational refinement of docking poses are in pro-

gress. For this reason our choice of using crystal structures as initial

conformation constitute a reasonable and convenient way to exploit

structures that are intrinsically among the most representative for

assessing free energies of ligand-receptor complexes.

Some final considerations should be done about the robust-

ness of the correlations that we obtained. As we have seen, the

calculations presented in this study aim at correlating calculated

binding free energies with experimental free energies obtained

from inhibition constants. Obviously, predicting absolute or rela-

tive free energies of binding in quantitative agreement with

experiment is a much more complicated task, but such effort

becomes far less relevant when using the method as a scoring

function, that is, when the problem is typically to rank ligands

and predict better binders. The fact that DG values calculated

with MM-PBSA may be far from experimental values on an

absolute scale is a known issue that has already been reported in

many other studies, in which free energies turned out to be usu-

ally overestimated. One way to bring free energies within the

range of experimental data is to include entropic effects as al-

ready discussed in the paragraph describing the entropic contri-

bution. Another possibility suggested in some applications is to

scale down binding energies by increasing the internal dielectric

constant.48,50–54 However, the validity and generality of such an

approach is still matter of debate, because the dielectric constant

of proteins depends in a critical way on its definition and on the

specific computational models used, and the precise physical

meaning of the dielectric constant in these continuum models is

ambiguous and system-dependent.48,50,51,53 To better shed light

on these issues, we have carried out further calculations with

higher values of internal e. The results reported in Table 5S

(Supporting Information) show that increasing the value of e
from 1 to 2, 4, 10, or 25 not only did not improve, but some-

times worsened the agreement with experimental DG values. In

addition to this, the application of higher dielectric constants

resulted in a remarkable decrease of correlation between com-

puted and experimental binding free energies that we attributed

to the different electrostatic dependence of complexes whose

ligands have different net charges. In fact, free energies tended

to scale uniformly with respect to e only for ligands with the

same net charge, so that mixing positively charged and neutral

ligand in the same dataset was detrimental for the correlation.

This observation is important because, to our knowledge, the de-

pendency of free energies on the internal dielectric constants

with sets of ligands with different charges was not explored in

previous studies. In light of these findings and given that the main

purpose of the study was to validate a method for ranking and not

for predicting absolute free energies, we may conclude that the

optimal usage of the dielectric constant is for e equal to 1.

Comparison of Simulation Times

While generation of a 2 ns MD trajectory in water required

approximately 5 days per molecule on a single core of a 2.4

GHz AMD Opteron processor, single energy minimization in

explicit water or implicit water with GBSA required only

12 and 77 min, respectively. Notably, energy minimization with

distance-dependent dielectric constant e 5 4r required only

3 min, and minimizations plus intermediate MD refinement of

the ligand took less than 8 min to complete. Regarding free

energy calculations, Delphi took around 4 min per structure,

whereas Amber PBSA and GBSA were significantly faster

(1 and 0.2 min, respectively).

These numbers unequivocally show that simple energy mini-

mizations with distance-dependent dielectric constant or explicit

water coupled with Amber PBSA or GBSA free energy predic-

tions are largely compatible with the typical size of virtual

screening deployments. In fact, the possibility of running these

calculations on large-scale computing facilities such as HPC

clusters or grid platforms enable the processing of several thou-

sands of compounds in a day.

Performance of MM-PBSA and MM-GBSA in a Virtual

Screening Experiment

Virtual screening is an important computational approach for the

identification of biologically active compounds. The screening is

typically performed with molecular docking, which assesses the

orientation of molecules in the target active site of a macromole-

cule and uses scoring functions to predict the strength of their

association. Despite recent improvements, one major drawback

of these methods is that scoring functions still struggle in esti-

mating ligand binding energies in agreement with experiment,

with the consequence that false positive and false negative hits

largely populate the ranked list of compounds. In order to test

the performance of our single-structure approach combined with

the use of MM-PBSA and MM-GBSA scoring functions, we

have carried out a virtual screening experiment using the DHFR

benchmarking data set put forward by Shoichet and Irwin,43 in

their directory of useful decoys (DUD). The data set, composed

of 201 known DHFR ligands and 7150 decoy molecules that

resemble the physical properties of the ligands but are chemi-

cally and topologically distinct from them, was docked into the

DHFR crystal structure using AutoDock. Then, the resulting pro-

tein-ligand and protein-decoy complexes were further processed

using our methodology.

The performance of the virtual screening was evaluated by

its capacity to enrich the small number of known active com-

pounds in the top ranks of the screen from among a much

greater number of decoy molecules present in the database. The

enrichment curves obtained with Autodock and MM-PBSA and

MM-GBSA are shown in Figure 2, in which the higher the per-

centage of known ligands found at a given percentage of the

ranked database, the better the enrichment performance of the

virtual screen. When compared with Autodock, we found that

MM-PBSA and MM-GBSA yielded strikingly better enrich-

ments. Therefore, the application of our refinement and rescoring

procedure resulted in a significant improvement of the ranking

of known inhibitors. It is worth noting that most of the active

compounds in the DHFR data set contain folate, pteridine, py-

rimidine, and triazine scaffolds with known general binding

mode (a protonated heterocycle interacting with D54, I164, and
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A14 residues).18,21–23 Although AutoDock was able to predict

the binding orientation of these compounds in agreement with

the available crystal structures, we remark significant difficulties

in ranking them amongst the best compounds. As some rela-

tively small fraction of the best-ranked compounds are typically

selected for biological assays, according to the original Auto-

Dock scores alone the known active compounds would not have

been selected for such purpose.

Conclusions

We have tested the performance of different theoretical

approaches for their ability in correlating experimental and cal-

culated binding free energies. The various methods were devised

by combining different techniques for the generation of struc-

tures and different algorithms for the estimation of binding free

energies, and were validated on a training set of twenty-two

diverse Plasmodium falciparum DHFR inhibitors with known

binding mode and measured affinities.

The results showed that the MM-PBSA and MM-GBSA

methods achieve promising accuracy and rank the inhibitors in

striking correlation with experimental binding affinities. Impor-

tantly, we found that correlations obtained with the use of a sin-

gle protein-ligand minimized structure were in all similar to

those obtained after averaging over multiple MD snapshots, with

consequent save of computing time without loss of accuracy.

This finding is particularly relevant in the context of virtual

screenings, in which the large number of molecules typically

processed precludes the use of time-consuming procedures.

Therefore, our findings based on single minimized structures

qualify this approach as an attractive opportunity for postpro-

cessing molecular docking results and more accurately rank-

ordering potential ligands before biological evaluation. Remark-

ably, such an approach can handle structurally dissimilar ligands

and provides results at a fraction of the computational cost

required to generate and analyze molecular dynamics trajectories

in explicit water molecules. Therefore, after further validation

on different proteins and ligand datasets, such approach may

have great interest for high throughput virtual screening. A

benchmarking screening performed on DHFR showed that our

methodology was indeed able to discriminate between true

ligands and decoy molecules with similar physical properties.

Notably, the enrichment curves obtained with our approach

showed a marked improvement with respect to that obtained

with a standard docking scoring function, resulting in better

enrichment of known active compounds and significant improve-

ment of the ranked lists.

Although the aim of this study was to shed light on the abil-

ity and usefulness of different algorithms (MM-PBSA and MM-

GBSA) and different computational protocols (sampling of con-

formations and use of explicit/implicit solvent models) to rapidly

assess the free energy of binding in protein-ligand systems such

as pfDHFR, additional investigation on other biological targets

that show, for instance, higher conformational flexibility are

under way to further validate these techniques towards their use

in the context of virtual screening campaigns. Finally, it is worth

noting that while the present study focused on protein-ligand

interactions to validate a fast and accurate method to predict

thermodynamics of binding in silico, broader applications of this
methodology can be envisaged for other types of host-guest

intermolecular complexes, such as those involved in supramolec-

ular assemblies of molecules, molecular recognition, chiral sepa-

ration, and others.
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