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The recognition process between a protein and a partner represents a significant theoretical
challenge. In silico structure-based drug design carried out with nothing more than the three-
dimensional structure of the protein has led to the introduction of many compounds into
clinical trials and numerous drug approvals. Central to guiding the discovery process is to
recognize active among non-active compounds. While large-scale computer simulations of
compounds taken from a library (virtual screening) or designed de novo are highly desirable
in the post-genomic area, many technical problems remain to be adequately addressed. This
article presents an overview and discusses the limits of current computational methods for
predicting the correct binding pose and accurate binding affinity. It also presents the perform-
ances of the most popular algorithms for exploring binary and multi-body protein
interactions.

Keywords: flexibility; binding affinity; protein–ligand/protein; interactions;
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1. INTRODUCTION

Top pharmaceutical companies use both biophysical
and computational methods for small ligand screening
and drug design. Biophysical methods including nuclear
magnetic resonance (NMR), mass spectrometry and
fluorescence-based techniques allow the qualitative
detection of a small molecule binding to a target and
the quantitative determination of physical parameters
associated with binding [1]. Drug design methods
include structure-based virtual screening, where the
three-dimensional protein structure is known [2,3],
and ligand/pharmacophore-based virtual screening in
the absence of a known receptor structure in order to
identify and exploit the spatial configuration of essen-
tial features that enable a ligand to interact with a
specific receptor [4,5]. Recent years have also seen the
emergence of chemogenomics with the aim of under-
standing the recognition between all possible ligands
orrespondence (philippe.derreumaux@ibpc.fr).
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and the full space of proteins by using traditional
ligand-based approaches and biological information on
drug targets [6] or by requiring only protein sequence
and chemical structure data [7].

In this review, we focus on the current approaches
aimed at structure-based virtual screening that circum-
vent the time, labour and material costs associated with
experimental binding essays and have led to success
stories for specific targets [8–10]. In a typical virtual
screening experiment, ligands can be generated de
novo using combinatorial chemistry or taken from a
library of chemical compounds. The resulting ensemble
of thousands to millions of small molecules are then
optimally docked to the target protein and sub-
sequently ranked according to their calculated binding
energies [11]. There are two main bottlenecks in this
procedure. The first one is related to the propensity to
generate native or native-like docking poses. In the
first chapter of this review, we report our current under-
standing of biomolecular recognition and the methods
This journal is q 2011 The Royal Society
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used for sampling the conformations of proteins and low
molecular weight molecules separately. The second
bottleneck in virtual screening is related to the corre-
lation between the experimental and predicted binding
affinities. Numerous studies predict false-positives or
compounds with poor affinities. In the second chapter,
particular emphasis is placed on advanced methods for
predicting three-dimensional ligand-binding pockets,
determining binding energies from physics-based inter-
actions, and sampling the configurational space of
protein–ligand complexes. Reviews on the effectiveness
of empirical scores and knowledge-based functions
to evaluate the interaction between ligands and rigid
proteins with a continuum description of solvent can be
found elsewhere [12–14].

Finally, the last chapter focuses on the field of binary
and multi-component protein interactions. In many
cases, the design of ligands must be envisioned in the
context of a network of interacting molecules that
have well-defined three-dimensional structures in iso-
lation or become folded upon either binding to one
partner or polymerization. Aggregation of several
proteins constitutes a major societal challenge, as it is
connected to human neurodegenerative diseases such
as Alzheimer’s disease (AD).
2. PROTEIN AND LIGAND PLASTICITY

It is well established that proteins, while adopting well-
defined structures in aqueous solution, are in constant
motion and display conformational heterogeneity
[15,16]. Experimental and theoretical studies also
show that proteins can fluctuate between open and
closed forms in the absence of ligand [17] and protein
domains are dynamic with movements including the
hinge bending and the shear motions [18]. Looking at
molecular recognition, involving the non-covalent
association of ligands (either low molecular weight mol-
ecules or proteins) to large macromolecules with high
affinity and specificity, two mechanisms have been con-
sidered for a long time. In the Fisher’s ‘lock-and-key’
model, the protein displacements are limited to a
few residues within the catalytic pocket and thus each
partner essentially binds in its lowest free energy confor-
mation [19]. In contrast, the Koshland’s ‘induced-fit’
model posits that the bound protein conformation
forms only after interaction with a binding partner [20].

Very recently, based on a large number of NMR
observables and the energy landscape theory of protein
structure and dynamics, a new molecular recognition
paradigm has emerged. The so-called ‘conformational
selection’ model postulates that many protein confor-
mations including the bound state pre-exist, and the
binding interaction leads to a Boltzmann population
shift, redistributing the conformational states [21].
This concept is rather bad news for drug design and
makes the docking exercise harder, because the avail-
able protein structures in the absence of small ligands
or protein-binding partners are no longer the final tar-
gets. In addition, the size of the conformational
ensemble for docking will depend on the shape of the
free energy landscape and it is possible that very large
J. R. Soc. Interface (2012)
amplitude motions occur with virtually no expense in
energy so that docking becomes very complicated.
The ‘conformational selection’ paradigm is also chal-
lenged by intrinsically disordered proteins (IDPs),
which are expected to represent 30 per cent of eukary-
otic genome-encoded proteins with wholly or partially
unstructured domains [22]. In many cases, IDPs
undergo folding, in whole or in part, upon binding to
their biological targets. This transition, referred to as
‘coupled folding and binding’ [23], may shift the
minima in the conformational space by introducing
new conformations.

There is a wide spectrum of theoretical approaches to
tackle the functional motions of proteins ranging from
normal mode analysis, which determines small
vibration motion around a local minimum by means
of the Wilson GF method [24] to molecular dynamics
(MD)-based methods [25] that explore the configura-
tional space by solving the Newton equations of
motion. All these methods can use an all-atom or a
coarser description of the target with explicit or implicit
solvent representations. Coarse-grained (CG) models,
which make use of beads to represent groups of atoms,
reduce the number of degrees of freedom and extend
the size of the systems to be studied. For example,
one protein can be represented by interacting centres
at the Ca atom positions (one-bead model), Ca atom
and centroid positions of the side-chains (two-bead
model), and three to six bead positions [26–31].

Normal mode analysis calculates with high accuracy
the lowest vibrational frequency modes which very often
resemble the conformational change between the
unbound and bound protein forms [32]. By using a set
of 20 proteins that undergo large conformational
change upon association (.2 Å Ca RMSD), a single
low-frequency normal mode was found that describes
well the direction of the observed conformational
change only in 35 per cent of the proteins studied start-
ing from the unbound form [33]. Since these collective
motions are related to the form and topology of the
protein of interest [34], they are invariant to the details
of the energy function [35] and can be obtained using
elementary representations, opening the study of very
large systems, such as the ribosome [36]. A more
robust description of protein-collective motions can be
obtained using ‘consensus’ normal modes from a set of
related structures [37]. The drawback of normal mode
analysis is that sampling is carried out in the vicinity
of the starting structure and therefore it neither gives
the real amplitude of the motion nor does it provide
any information on the thermodynamics and kinetics
of the transition.

It is possible to go beyond harmonic motions by
various stochastic methods using constraint theory [38],
activation–relaxation [39] or path-planning approaches
[40,41]. The activation–relaxation technique in internal
coordinate space, ARTIST [39] was found to be efficient
for exploring conformational space in densely packed
environments by successive identifications and crossings
of well-defined saddle points connecting minima, i.e.
energy minimized structures that are accepted/rejected
using the Metropolis criterion. ARTIST is not sensitive
to the heights of the barriers and can therefore move
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through the configurational space. It lacks, however, a
proper thermodynamical basis [39]. Path-planning is a
classical problem in robotics. It consists of computing
feasible motions for a mechanical system in a workspace
cluttered by obstacles. Within this approach, molecules
are modelled as articulated mechanisms. Groups of
rigidly bonded atoms form the bodies of the mechanism
and the articulations between bodies correspond to bond
torsions. These torsions are the molecular degrees of free-
dom. The capabilities of path-planning for exploring
protein motion were recently demonstrated for long flex-
ible loops and domains [40,41].

At the other end of the spectrum, the most widely
used approach for exploring the functional motions of
proteins is all-atom MD simulation with explicit treat-
ment of solvent and ions [25]. These simulations,
which typically cover a timescale of 20–200 ns depend-
ing on the protein size and the available computer
resources, cannot routinely explore large conformational
changes occurring in the microsecond–millisecond
timescale. Using Anton, a specially built supercompu-
ter, atomic folding characterization of three proteins
up to 56 amino acids was however recently reported
for 100–1000 ms [42].

Other techniques offer a unique alternative to bridge
detailed intermolecular interactions and motions occur-
ring at larger spatial scales and longer timescales.
The temperature replica exchange molecular dynamics
(T-REMD) simulation consists of running N MD simu-
lations in parallel (or replicas) at N increasing values of
temperature [43]. At regular intervals, two MD, at adja-
cent temperatures, exchange their conformations
according to the Metropolis criterion. The rationale
underlying this method is that simulating at high temp-
eratures allows the replicas to cross free energy barriers
that are trapped at low temperatures. All of these
sampled data can be used in the weighted histogram
method (WHAM [44]) to obtain the full thermo-
dynamics properties of the system, such as the heat
capacity. Because the number of replicas scales with
the number of degrees of freedom, all-atom T-REMD
in explicit solvent is not routinely performed on large
proteins consisting of more than 100 amino acids [45].
To accelerate sampling for large systems, we can
resort to T-REMD with CG protein models [46] or use
alternative all-atom approaches such as Hamiltonian
replica exchange molecular dynamics (H-REMD) or
temperature-accelerated molecular dynamics (TAMD).
H-REMD uses several related Hamiltonians for different
replicas, where only some of the terms of the potential
energy function are modified across replicas through
scaling parameters [47–49]. On the other hand, TAMD
rapidly explores the important regions in the free
energy landscape associated with a set of continuous
collective variables (CVs). As CVs, we may select for
instance hinge bending angles or low-frequency normal
modes. By using CVs related to the Cartesian coordi-
nates of the centres of contiguous domains, TAMD
applied to the GroEL subunit, a 55-kDa, three-domain
protein and the HIV-1 gp120 unit, has led to large-
scale conformational change that may be useful in the
development of inhibitors and immunogens [50]. It is
also possible to perform all-atom explicit solvent
J. R. Soc. Interface (2012)
metadynamics using a large number of CVs without
any knowledge of the bound form, as described in §3,
or run discrete (discontinuous) molecular dynamics
(DMD) using all-atom [51] or CG [52–54] models.
DMD does not require numerical integration of Newton’s
equations but rather computes and sorts collision times,
resulting in an improved computational efficiency.

Finally, for large proteins, it would also be possible to
follow a hierarchical procedure consisting of T-REMD
simulations with a CG model and multiple short all-
atom MD simulations in explicit solvent starting from
the predicted lowest energy CG conformations [55].

In principle, the biologically active conformations of
any low molecular weight molecule in isolation can be
determined by MD-based or stochastic methods. While
feasible for a small number of targets, they are too slow
for high-throughout screening, and techniques using an
ensemble of discrete states [56–58] or sampling diction-
aries of rotatable bonds [59–61] are preferable. An
example of such a fast technique for large-scale de novo
peptide structure prediction is PEP-FOLD [62]. This
WEB-server approach takes advantage of the concept
of structural alphabet [63], in which protein backbones
are described as a series of consecutive fragments of
four residues. By predicting a limited series of local con-
formations along the sequence, the folding problem is
turned into an assembly of rigid fragment conformations
using a chain growth or greedy method [64,65]. Although
the progressive assembly poses numerous questions, par-
ticularly for the analytical form of the Van der Waals
interactions to be used since steric clashes occur much
more frequently in a discrete space than in a continuous
space, PEP-FOLD folded 25 peptides of 9–25 amino
acids with a-helix, b-strand or random coil character
accurately (RMSD of 2.3 Å on the peptide NMR rigid
cores) and very rapidly (in a few minutes). This result
opens new perspectives for the design of small peptides
and even mini-proteins [66] and indicates that discretiza-
tion is feasible for any ligand types and biomolecular
systems, including polyRNA and oligosaccharides if it
is accompanied by further consistent non-polarizable
[67–74] and polarizable [75,76] force field improvements.
3. PROTEIN–LIGAND INTERACTION

An important and very active issue in protein–ligand
recognition, where the ligand is a small molecule, is to
predict three-dimensional ligand-binding pockets.
Numerous structure-based methods, in particular for in
silico screening of small compounds, have been devel-
oped to detect pockets, clefts or cavities in proteins
[77–88]. Starting from the experimental structures, cur-
rent approaches can be classified as geometric, energetic
and with or without any consideration of evolutionary
information.

Geometric approaches for locating cavities use either
Voronoi diagrams such as CASTp [77] or fpocket [78]
or three-dimensional grid-based approaches such as
VICE [79], PocketPicker [81] and LigSite [82] that
search for grid points that are not situated within the
protein and satisfy some conditions. For instance,
the scanning procedure in PocketPicker [81] comprises

http://rsif.royalsocietypublishing.org/
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Figure 1. Protein adaptation to ligand binding. (a) Conformation of the phospholipase A2 without ligand (PDB 3p2p). (b) Con-
formation bound to an inhibitor (PDB: 5p2p). The protein orientations are strictly identical. Images generated using pymol.
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the calculation of ‘buriedness’ of probe points installed
in the grid to determine their atom environment. The
accessibility of a grid probe is calculated by scanning
the molecular surrounding along 30 search rays of
length 10 Å and width 0.9 Å. As a result, the calculated
buriedness indices range from 0 to 30 indicating a
growing buriedness of the probe in a protein. The cluster-
ing of grid probes for pocket identification is restricted
to those probes with buriedness indices ranging from 16
to 26. In LigSite [82], the protein is mapped onto a
three-dimensional grid. A grid point is part of the protein
if it is within 3 Å of an atom coordinate; otherwise it is
solvent. Next, the x, y and z-axes plus the four cubic
diagonals are scanned for pockets, which are character-
ized as a sequence of grid points, which start and end
with the label protein and a period of solvent grid
points in between. These sequences are called protein–
solvent–protein (PSP) events. Pockets are then defined
using as regions of grid points with a minimum number
of PSP events. In practice, a threshold of two PSP
events yields good results.

Energetic approaches are based on the calculation of
interaction energies between the protein and one or a
collection of probes or chemical groups. For instance,
Laurie & Jackson [83] use a methyl probe at grid
points, while An et al. [84] calculate a grid potential
map using a carbon atom probe. Brenke et al. use an
approach based on fast-Fourier techniques to map 16
small probes (ethanol, ispropanol, urea, etc.) to identify
the hot spots of interaction, i.e. regions that are likely to
bind small drug-like compounds with more affinity than
the rest of a pocket [85]. Finally, combining evolution-
ary sequence conservations and three-dimensional
structure-based methods has proven of interest for
identifying surface cavities [80], and ConCavity [86]
was found to outperform many approaches on a large
set of single- and multi-chain protein structures.

The static view used by all previous pocket detection
methods meets, however, three major limitations.
Firstly, the methods will identify more than one candi-
date. Although the largest pocket frequently matches
the experimental ligand-binding site (e.g. [87]), this
rule cannot be generalized, and the question of ranking
the pockets in terms of druggability remains to be
determined. Secondly, algorithms will usually identify
regions larger than the effective interacting area on
the protein surface and a finer delimitation of pockets
J. R. Soc. Interface (2012)
is important in the context of in silico screening.
Thirdly, pocket detection from ligand-free protein con-
formation can be misleading because the bound and
unbound protein conformations can differ [88] as seen
in figure 1. In addition, the traditional active site
pocket concept meets its limits in the emerging field
of protein–protein interaction inhibitor design where
the notion of cavity becomes fuzzier and the obser-
vation of transient pockets at protein–protein
interfaces for instance is particularly challenging
[89,90]. The pocket-detection approach can be however
tackled using simulation approaches. In particular,
CG normal modes [91] and Brownian dynamics [92]
have been shown to be useful for the prediction of
functional sites. Recent approaches also start to track
pockets in MD trajectories. The analysis of protein flexi-
bility is expected to provide better understanding of
pocket properties.

Along with pocket identification approaches,
several docking methods are available to screen and
evaluate a library of ligands [93–96]. These algorithms,
which can allow full flexibility of the ligands, trade
accuracy for CPU time and suffer therefore from
three drawbacks.

Firstly, the limited sampling of the thermodynami-
cally accessible protein conformations can be
responsible for the failure to find the docked pose.
One way of incorporating protein backbone flexibility
is to consider a conformational ensemble using exper-
imental data (for instance, different X-ray crystal or
NMR-derived structures) and/or simulations (for
instance, short MD simulations and normal mode
analysis). This pre-generated protein ensemble is not
sufficient when the target undergoes extensive
rearrangement and only the crystal structure of its
apo-structure is available [97]. However, inclusion of
multiple protein and ligand conformations may also
increase the ability of scoring functions to eliminate
false-positives, as highlighted by the recent LigMatch
approach [98].

Secondly, analysis of a large number of incorrect
ligand–receptor docking poses indicates many other
sources of error beyond receptor flexibility. They
include improperly assigned histidine tautomers,
charged states for aspartate, glutamate and histidine
[96] and absence of water molecules in the binding
region [99].

http://rsif.royalsocietypublishing.org/
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Thirdly, calculating binding free energy between a
protein and a ligand in quantitative agreement with
experiments, one of the most ambitious goals of
structure-based drug design, is difficult to reach for
high-throughput screening. In a recent study,
Kim and Skolnick studied the quality of the BLEEP
(knowledge-based), FlexX and X-Score (empirical)
and AutoDock scores in various situations, including
co-crystallized complex structures, cross-docking of
ligands to their non-co-crystallized receptors, docking
of thermally unfolded receptor decoys to their ligands
and complex structures with ‘randomized’ ligand
decoys. In all cases, the correlation of the raw docking
score with the affinity is generally poor [100], confirm-
ing earlier studies [101] even in congeneric series [93].
Improving the correlation is a hard task and moves at
a slow pace. In 2008, MedusaScore, based on models
of physical interactions including van der Waals, sol-
vation and hydrogen-bonding energies, was found to
outperform the 11 scoring functions that are widely
used in virtual screening for docking decoy recognition
and binding affinity prediction [102]. However, the
Pearson correlation coefficient between the score and
the experimental dissociation constant pKd for the
PDBBind database is only 0.63, matching the perform-
ance of the RosettaLigand procedure developed in
2006 [103]. Finally, by analysing the performance of
six docking programs (DOCK, FlexX, GLIDE, ICM,
PhDOCK and Surflex), Cross et al. [104] reported gen-
eral trends in accuracy that are specific for particular
protein families, suggesting that expert knowledge is
critical for optimizing the accuracy of these methods.

All-atom MD simulations have long been discarded
for virtual drug screening because they require a signifi-
cant effort to calculate accurate residual charges and
torsional energy barriers for all possible compounds,
although progress has recently been made in this direc-
tion for small organic molecules [105]. More
importantly, while the binding free energy can be
deduced from the probability to find a ligand in inter-
action or not with its target during an MD
simulation, exploring the relevant space of configur-
ations is very time consuming because of the necessity
to simulate rare events associated with crossing acti-
vation barriers. Yet, significant progresses have been
achieved in making MD more tractable for drug
design: increase of computer power and design of special
machines [106–108] and development of two MD-based
families to estimate in order to compute binding free
energies: endpoint and pathway methods [109,110].

Special machines, such as Anton [106,107] or MD
engines running on graphical processing units [108],
have been able to sample the full binding pathways of
how a drug finds its target binding site, for example
the cancer drug dasatinib with the Src kinase protein
within 15 ms [106], an irreversible agonist-b2 adreno-
ceptor complex within 30 ms [107], and the enzyme–
inhibitor complex trypsin–benzamidine using a total
time of 49.5 ms [108].

Endpoint free energy methods, such as the Molecular
Mechanics Poisson–Boltzmann Surface Area (MM/
PBSA) model, have received much attention because
they benefit from computational efficiency as only the
J. R. Soc. Interface (2012)
initial and final states of the system are evaluated. In
the MM/PBSA approach, an explicit solvent simulation
of the bound state is carried out. Then the simulation is
post-processed to determine the enthalpic differences
between the bound and unbound solute states. The
solvation-free energy is the sum of a polar solvation
term using the Poisson model and a non-polar term esti-
mated by solvent-accessible surface area (SASA). The
conformational entropy change is usually computed
by normal mode analysis.

In a pioneering study, MM/PBSA was used to rank
the binding affinities of 12 TIBO-like HIV-1 RT inhibi-
tors. Good agreement between MM/PBSA results and
experiments was obtained not only for the relative bind-
ing free energies, but also for the absolute ones, which
have a root mean square deviation of 1.0 kcal mol21

and a maximum error of 1.9 kcal mol21 [111]. The qual-
ity of the agreement depends, however, on the target
families studied. For instance, the free energy of binding
between avidin and seven biotin analogues led to a mean
absolute error of 2.3–4.5 kcal mol21, arising mainly from
the entropy contribution [110]. Enhanced performance
to recognize active among non-active compounds may
be achieved by combining massive MD simulations of
protein–ligand conformations obtained by molecular
docking and MM/PBSA. This was confirmed by a
recent study in which, trypsin, HIV-1 protease and
acetylcholine esterase were each subjected to a 700 ps
MD simulation using each of the top-ranking 1000
compounds obtained by docking. This pre-generated
MD protein–ligand conformation ensemble was not,
however, sufficient for cyclin-dependent kinase-2 [112].

There exist a few faster variants to the MM/PBSA
method, such as MM/GBSA, in which the generalized
Born (GB) solvent model is used to score the structures.
A survey of recent literature reports various degrees of
success. On the one hand, the docking poses a diverse
set of pharmaceutically relevant targets, including
CDK2, Factor Xa, thrombin and HIV-RT were re-
evaluated using MM/GBSA and the correlation in
all cases between the MM/GBSA results and the
–log(IC50) experimental data, where IC50 represents
the compound/substance concentration required for 50
per cent inhibition, was satisfactory [113]. Accurate pre-
diction of the relative potencies of members of a series
of kinase inhibitors was also reported using molecular
docking and MM/GBSA scoring [114]. Overall, these
methods are less expensive than those that use an expli-
cit representation of the solvent. However, they can be
fully unreliable when interfacial water molecules are
present between the ligand and the cavity [99,115], and
when the ligand-reorganization free energy is not taken
into account. Using the X-linked inhibitor of apoptosis
(XIAP) protein and 31 small ligands, major improve-
ment was achieved when the free-energy change for
ligands between their free- and bound-states, or ligand-
reorganization free energy, was included in the MM/
GBSA calculation, with the linear correlation coefficient
value between the predicted and the experimentally
determined affinities increasing from 0.36 to 0.66 [116].

Finally, it is of interest to compare the performances
of the MM/PBSA and MM/GBSA methods. One
recent study based on an ensemble of 59 ligands
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interacting with six different proteins showed that MM/
PBSA gave better correlations than MM/GBSA with
experiment, and MM/PBSA performed better in calcu-
lating absolute, but not necessarily relative, binding free
energies [117]. However, the performances of PBSA are
very sensitive to the solute dielectric constant and the
characteristics of the interface, while the performances
of GBSA depend on the GB model used. Considering
its ability to be used in MD simulations, GBSA could
serve as a powerful tool in drug design.

The second MD-based family to calculate free energy
includes the rigorous, but computationally expensive
pathway MD methods [118]. The most widely known
is the alchemical double decoupling method, where
the interactions of the ligand with the protein and bulk
solvent are progressively turned off. Alternatively, it is
possible to use a potential of mean force (PMF)
method, where the ligand moves along a reaction path
from the binding site to the bulk solution [93,119].
In both of these computational approaches, various
restraining potentials may be turned on and off to
explore more efficiently the translational, rotational
and conformational changes of the ligand and protein
upon binding, and their effects are removed to yield an
unbiased binding free energy. Alchemical decoupling
approaches have been shown to provide reliable binding
free energies within an accuracy of 1 kcal mol21 if the
protein conformational changes upon ligand binding
are small, the ligand is uncharged and its solvation free
energy is not very large. They are preferable if the
ligand binds to buried sites or cavities, and a simple
path for ligand association cannot be found. In contrast,
PMF-based approaches are preferable if the solvation
free energy of the ligand is very large [119]. Interestingly,
in a recent blind test, the binding free energies of 50
neutral compounds to the JNK kinase were computed.
The free energy computations correctly predicted two
of the top five binders, as well as six of the 10 worst bin-
ders. The computed binding free energies range from
216 to 23 kcal mol21, while the experimental values
range from 28.6 to 25.5 kcal mol21. The error in some
cases amounts to 7 kcal mol21, emphasizing again the
impact of large protein motion and/or wrong side-
chain rotameric states on free energy calculations [119].
For large and flexible protein–ligand system, such as
the protein plasmepsin of PM II and several exo-3-
amino-7-azabicyclo[2,2,1] heptanes, the use of replica
exchange-based free energy methods resulted in
enhanced convergence, but still failed to reproduce
experimental data [120].

Metadynamics or Hill’s method is occupying a
place of choice in pathway MD methods [121]. Meta-
dynamics, which accelerates the sampling of rare
events, maps out the free energy landscape as a function
of a small number of CVs. This method is a modification
of a standard MD simulation in which restraints are
imposed on appropriately selected CVs of the system
by a history-dependent potential. The history-dependent
potential, by summing up Gaussian functions at regular
time intervals along the trajectory, disfavours already
visited configurations. Metadynamics was successfully
applied to several ligand–protein interactions leading
to a better understanding of specific interactions in
J. R. Soc. Interface (2012)
molecular recognition and binding affinities [122–125].
However, calculating the free energy projected on CVs
is computationally intensive. Clearly, the accuracy of
the free energy surface will depend on the force field
used, but more importantly on the CVs used to des-
cribe the slow degrees of freedom associated with
molecular recognition. In particular, it is important to
explore the internal degrees of the protein (e.g. loop
motions, large-scale motion and possible structured/
disordered transitions in specific regions) and the
degrees of freedom associated with the in and out
motion of the ligand from the protein active site. The
choice of these independent CVs is non-trivial and
target–ligand-dependent.

Finally, by providing the energy and the position of
transition states, the PMF method and metadynamics
offer the perspective to extract not only thermodynamic,
but also kinetic properties such as the association and
dissociation constant rates that impact the efficacy and
action time of drugs and have been mostly out of reach
of simulations thus far [106–108,126].
4. PROTEIN–PROTEIN AND MULTI-
COMPONENT PROTEIN INTERACTIONS

The field of protein–protein interactions has rapidly
progressed in the past 10 years [127]. Proteins seldom
act alone and most cellular functions are regulated
through intricate protein–protein interaction networks.
Large efforts have been made to unveil these inter-
actions in a high-throughput manner, with the first
interactome maps for several model organisms
[128,129]. We can identify binary interactions—that
involve only two proteins by multiple methods such as
array technology, cross-linking study, cytoplasmic
complementation assay, NMR, two hybrid or X-ray
crystallography)—and multi-component interactions
[130,131]. It is to be noted that if the experimental
protein–protein structures are known, there are
computer-based tools available to design proteins to
bind faster and tighter to their protein-complex partner
by electrostatic optimization between the two proteins
[132,133].

Protein–protein docking aims to predict the three-
dimensional structure of a complex from the knowledge
of the structure of the individual proteins in aqueous
solution. Many docking methods are now able to
predict the three-dimensional structure of binary assem-
blies if the protein partners do not display important
conformational changes between their bound
and unbound forms [134–137]. However, large-scale
motion upon binding is still a major and unresolved pro-
blem in the absence of experimental constraints. This
motion generally involves the displacement or the
internal rearrangement of loops or domains and can
also be characterized by the simultaneous movement
of several flexible parts (up to three in known cases).
For instance, by using all-atom metadynamics, the
transition between the bound and unbound structures
of the cyclin-dependent kinase 5 (CDK5) reveals that
the large-scale movement has a two-step mechanism:
first, the aC-helix rotates by 458, allowing the
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interaction between Glu51 and Arg149; then the CDK5
activation loop refolds to assume the closed confor-
mation [138]. As a result, the binding interface can be
completely remodelled from the two unbound forms
and it is therefore necessary to take flexibility into
account at the beginning of the docking simulations.
Collective movements of lower amplitudes have a less
dramatic impact on the quality of the predictions but
still can bias the results. Clearly, if the structure of
the complex with homologous partners is available,
this enhances the probability to have native-like confor-
mations in the heap of states.

In the current docking programs, the first stage is
aimed at a systematic exploration of the possible geo-
metries of association and is performed either under
rigid body approximation [139–142] using all-atom or
CG representations or by using a limited sampling of
protein backbone conformations. These latter methods
involve: (i) the use of CG models [143] with either
normal modes [144] or multi-copy approaches where
discrete possible loop conformations are taken into
account simultaneously [145]; (ii) multi-component
docking of flexible domains that are kept rigid using
geometric hashing [146]; (iii) Monte Carlo searches
of backbone conformations and rigid-body degrees of
freedom [147]; and (iv) pre-identification of binding
interface and use of more time-consuming search
approaches like MD, restricted in space [148].

The second refinement stage of most current docking
programs introduces some flexibility by optimizing the
side-chain interactions and the rigid body orientations
and generates thousands of solution candidates that
are ranked using a scoring function. Other programs
or web servers introduce, however, backbone flexibility,
and not only side-chains and rigid-body orientations.
For example, in FiberDock, backbone mobility is mod-
elled by an unlimited number of low and frequency
normal modes [149], while in ATTRACT, it is model-
led by the first few lowest frequency modes [143].
As reported in §3, precise evaluation of the binding
free energy requires highly time-consuming exploration
of all the details of the interaction at atomic preci-
sion and accurate information on binding affinities is
therefore out of reach of all current docking methods.

The performances of state-of-the-art docking strat-
egies producing rigid body solutions were recently
evaluated by using a benchmark of 124 interacting
pairs for which a high-resolution structure of the
complex and the individual components exist [150].
Docking poses for all pairs were generated using
FTDock [151] and ZDOCK3 [139], together with
one of the most successful docking scoring schemes
(pyDock [152]). While ZDOCK3 outperformed
FTDOCK, ZDOCK3 obtained an acceptable solution
among the top three for only 20 per cent of the cases.
This low accuracy poses questions on the usefulness
of these programs to study in high-throughput cross-
docking manner protein–protein interactions without
any knowledge of the interacting pairs [153]. The
same conclusion was reached by a more recent study
which concluded that there is a poor correlation
between measured binding energies and nine commonly
used scoring algorithms including pyDock for 81
J. R. Soc. Interface (2012)
complexes [154]. There is strong evidence that running
docking experiments using homology models of the indi-
vidual proteins is likely to decrease the success rate
[153].

Coupling orientation procedures with flexibility
of the protein backbone and the side-chains during
the first stage of protein docking is a challenge. It is
well known that side-chain rotamers are dependent on
the main-chain conformation and side-chain rotamer
transitions frequently occur at protein–protein inter-
faces [155]. Recently, a total of 64 groups and 12 web
servers submitted docking predictions for 11 protein
complexes and their performances were analysed in
Critical Assessment of PRediction of Interactions
(CAPRI) 2009 [156]. Overall, the evaluation reveals
that eight groups produced high- and medium-accuracy
models for six targets with medium conformational
changes (1.5–2 Å; RMSD) upon interaction but explor-
ing larger backbone and loop rearrangements, and
improving the criteria for selecting promising solutions
need to be addressed [137].

Significant progress was also reported by the Symm-
dock procedure for complexes with Cn symmetry (with
a vertical n-fold axis of symmetry) by geometry-based
docking [146] and the Rosetta ‘fold-and-dock’ pro-
cedure for symmetrical homodimeric complexes
starting from fully extended monomer chains using
symmetrical constraints [157]. A multi-scale approach
based on Brownian dynamics simulations starting
from X-ray crystal structures of the unbound proteins,
incorporation of relevant biochemical data followed by
all-atom MD simulations, in nine out of 10 cases yielded
structures of protein–protein complexes close to those
determined experimentally with the percentage of cor-
rect contacts . 30% and interface backbone RMSD ,

4 Å; [158]. Good results could be obtained for large-
scale simulations if multiple protein conformations
were pre-stored in a library using various techniques.
These include the all-atom activation–relaxation tech-
nique in internal coordinate space, ARTIST, with a
continuum solvent model [159] and CG models coupled
to Brownian dynamics [160] or MD simulations [161] if
the protein fold is not too much maintained using the
elastic network model.

Clearly, the field of protein interactions goes beyond
docking and scoring two entities and three issues pose
numerous challenges. Determining whether two given
proteins interact is an extremely difficult in silico pro-
blem [162]. Current docking strategies often give high
scores for proteins that do not interact experimentally.
Little work has been reported in this cross-docking
area, but an important result on protein surfaces is
that the optimal orientations of the partners tend to
lie within the largest cluster of docking results [163].
More recently, it was found that simply studying the
interaction of all potential protein pairs within a
dataset can provide significant insights into the identifi-
cation of the correct interfaces [164]. The second issue
lies in the development of algorithms able to dock pro-
teins with well-defined three-dimensional structures
beyond binary interactions. This field has attracted
recent attention, leading to a combinatorial docking
approach [165], the Rosetta ‘fold-and-dock’ procedure
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[157]) and the HADDOCK multi-body docking program
up to six molecules using experimental and/or bioinfor-
matics to drive modelling [166].

Finally, and more complex and urgent is the case
where random coil proteins aggregate first into soluble
oligomers and then to insoluble amyloid fibrils, leading
to misfolding diseases such as AD, the most common
form of senile dementia. With increased life expectancy
and an ageing population, the number of patients with
AD is expected to reach 80 million in 2040. The hypo-
thesis for AD causation for which the greatest clinical
and experimental support exists is that oligomeric
forms of the b-amyloid protein with 39–43 amino
acids are the proximate neurotoxic agents [167]. Thus
far, no disease-modifying treatments exist and current
structural biology methods have failed to reveal three-
dimensional target structures of the Ab oligomers.
This is an extremely difficult problem as the low mol-
ecular weight aggregates are transient and in dynamic
equilibrium between many species ranging from
dimers to dodecamers [168].

A number of theoretical studies have recently deter-
mined the transmembrane structures of Ab oligomers
[169], and the structures of Ab oligomers in aqueous
solution by using multiple simulation approaches
described in §2 [170–176]. To increase our knowledge
on the exact mechanism of action for known Ab

drugs, several modelling studies were conducted [177–
182]. For instance, all-atom MD/REMD studies
looked at the impact of organic molecules, such as
naproxen, on Ab dimers [178] and protofilaments
[179] or the impact of N-methylated peptide-based
inhibitors [180,181] and the Pittsburg compound on
Ab protofilaments [182].

Other modelling studies along with transmission
electron microscopy and spectroscopic circular dichro-
ism (CD) experiments, cell viability essays [183–185]
and even in vivo experiments [186] helped in the
rational design of beta-sheet ligands against Ab42-
induced toxicity. For instance, formation of Ab42 oligo-
mer in the presence of C-terminal Ab inhibitors has
been studied by the DMD approach starting from
spatially separated monomeric mixtures of Ab42 and
inhibitors. It was found that Ab31–42 and Ab39–42
are leads for obtaining mechanism-based drugs for
treatment of AD using a systematic structure–activity
approach [184]. Additional DMD simulations suggest
that region Asp1–Arg5, which is more exposed to the
solvent in Ab42 than in Ab40 oligomers, is involved
in mediating Ab42 oligomer neurotoxicity [185].

Overall, there is increasing evidence that very long CG
and all-atom simulations, if coupled to low-resolution
experimental data, may soon provide the transient
Ab42/Ab40 oligomeric structures at an atomic level of
detail, a prerequisite for the discovery and optimization
of more efficient drugs against AD.
5. CONCLUSIONS

We have reviewed current in silico methodologies for
predicting the correct binding pose and affinity measures
in protein–ligand and protein–protein complexes.
J. R. Soc. Interface (2012)
While an increasing number of studies have reported
success stories in both areas [157,187,188], the size of
the libraries requiring screening and the possibility of
several interaction sites per protein still argue in favour
of using mostly rigid body approximations and empirical
scoring functions in order to select a small number of tar-
gets (,20) for experimental validation and further
learning [14]. This procedure is not optimal for two
reasons. Firstly, the methods cannot filter out all false-
positives and expert knowledge is highly desirable to
obtain compounds that bind selectively to their target
receptors and do not cause side-effects by binding to
other systems [104,189]. It is to be noted that false-posi-
tives are not available to the scientific community while
they would help adjust the current methodologies. Sec-
ondly, optimization of the thermodynamic and kinetic
properties is out of reach using standard computer
resources if the experimental protein–ligand and
protein–protein structures are not known.

The treatment of very large conformational changes
in the receptor induced by ligand or protein-binding
remains one of the biggest challenges in calculations
of binding free energies. Finding the relevant rotational,
translational and conformational degrees of freedom or
CVs for a binary complex is far from being trivial, but
this would be achievable for less than 20 candidates
with the increase of computer power using a multi-
scale approach that moves through different levels of
complexity and precision. In the first step, approximate
docking pathways could be sampled with rapid methods
such as elastic network models, path-planning
approaches and short replica exchange MD simulations
based on CG representations of the systems. Next, these
pathways could be refined and optimized with meta-
dynamics or other rigorous techniques by retaining a
full atomistic description of the system only in regions
of interest while describing the rest of the system with
elastic network models.

Much work remains to be done in the field of multiple-
component docking of either well-defined structured
proteins or proteins that fold, in whole or in part, upon
binding or polymerization. All these stimulating
challenges will undoubtedly involve extensive research.
REFERENCES

1 Renaud, J. P. & Delsuc, M. A. 2009 Biophysical tech-
niques for ligand screening and drug design. Curr.
Opin. Pharmacol. 9, 622–628. (doi:10.1016/j.coph.
2009.06.008)

2 Jorgensen, W. L. 2004 The many roles of computation in
drug discovery. Science 303, 1813–1818. (doi:10.1126/
science.1096361)

3 Morra, G., Genoni, A., Neves, M. A., Merz Jr, K. M. &
Colombo, G. 2010 Molecular recognition and drug-lead
identification: what can molecular simulations tell us?
Curr. Med. Chem. 17, 25–41. (doi:10.2174/
092986710789957797)

4 Clark, R. D. 2009 Prospective ligand- and target-based
3D QSAR: state of the art 2008. Curr. Top. Med.
Chem. 9, 791–810. (doi:10.2174/156802609789207118)

5 Dror, O., Schneidman-Duhovny, D., Inbar, Y., Nussinov,
R. & Wolfson, H. J. 2009 Novel approach for efficient
pharmacophore-based virtual screening: method and

http://dx.doi.org/10.1016/j.coph.2009.06.008
http://dx.doi.org/10.1016/j.coph.2009.06.008
http://dx.doi.org/10.1126/science.1096361
http://dx.doi.org/10.1126/science.1096361
http://dx.doi.org/10.2174/092986710789957797
http://dx.doi.org/10.2174/092986710789957797
http://dx.doi.org/10.2174/156802609789207118
http://rsif.royalsocietypublishing.org/


28 Review. Flexibility and binding affinity P. Tuffery and P. Derreumaux

 on February 5, 2013rsif.royalsocietypublishing.orgDownloaded from 
applications. J. Chem. Inf. Model 10, 2333–2343.
(doi:10.1021/ci900263d)

6 Strombergsson, H. & Kleywegt, G. J. 2009 A chemo-
genomics view on protein–ligand spaces. BMC Bioinform.
10(Suppl. 6), S13. (doi:10.1186/1471-2105-10-S6-S13)

7 Nagamine, N., Shirakawa, T., Minato, Y., Torii, K.,
Kobayashi, H., Imoto, M. & Sakakibara, Y. 2009 Inte-
grating statistical predictions and experimental
verifications for enhancing protein–chemical interaction
predictions in virtual screening. PLoS Comput. Biol. 5,
e1000397. (doi:10.1371/journal.pcbi.1000397)

8 Clark, D. E. 2006 What has computer-aided molecular
design ever done for drug discovery? Exp. Opin. Drug
Discov. 1, 103–110. (doi:10.1517/17460441.1.2.103)

9 Hardy, L. & Malikayil, A. 2003 The impact of structure-
guided drug design on clinical agents. Curr. Drug Discov.
3, 15–20.

10 Zoete, V., Grosdidier, A. & Michielin, O. 2009 Docking,
virtual high throughput screening and in silico fragment-
based drug design. J. Cell. Mol. Med. 13, 238–248.
(doi:10.1111/j.1582-4934.2008.00665.x)

11 Ghosh, S., Nie, A. & Huang, Z. 2006 Structure-based vir-
tual screening of chemical libraries for drug discovery.
Curr. Opin. Chem. Biol. 10, 194–202. (doi:10.1016/j.
cbpa.2006.04.002)

12 Guvench, O. & MacKerell Jr, A. D. 2009 Computational
evaluation of protein-small molecule binding. Curr. Opin.
Struct. Biol. 19, 56–61. (doi:10.1016/j.sbi.2008.11.009)

13 Rajamani, R. & Good, A. C. 2007 Ranking poses in
structure-based lead discovery and optimization: current
trends in scoring function development. Curr. Opin. Drug
Discov. Dev. 10, 308–315.

14 Kellenberger, E., Foata, N. & Rognan, D. 2008 Ranking
targets in structure-based virtual screening of three-
dimensional protein libraries: methods and problems.
J. Chem. Inf. Model 48, 1014–1025. (doi:10.1021/
ci800023x)

15 Mittermaier, A. & Kay, L. E. 2006 New tools provide new
insights in NMR studies of protein dynamics. Science
312, 224–228. (doi:10.1126/science.1124964)

16 Lange, O. F. et al. 2008 Recognition dynamics up to
microseconds revealed from an RDC-derived ubiquitin
ensemble in solution. Science 320, 1471–1475. (doi:10.
1126/science.1157092)

17 Henzler-Wildman, K. A. et al. 2007 Intrinsic motions
along an enzymatic reaction trajectory. Nature 450,
838–844. (doi:10.1038/nature06410)

18 Teague, S. J. 2003 Implications of protein flexibility for
drug discovery. Nat. Rev. Discov. 2, 527–541. (doi:10.
1038/nrd1129)

19 Fisher, E. 1894 Einfluss der configuration auf die wirkung
der enzyme. Ber. Dtsch. Chem. Ges. 27, 2984–2993.

20 Koshland, D. E. 1958 Application of a theory of enzyme
specificity to protein synthesis. Proc. Natl Acad. Sci.
USA 44, 98–104. (doi:10.1073/pnas.44.2.98)

21 Boehr, D. D., Nussinov, R. & Wright, P. E. 2009 The role
of dynamic conformational ensembles in biomolecular
recognition. Nat. Chem. Biol. 5, 789–796. (doi:10.1038/
nchembio.232)

22 Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J.,
Uversky, V. N. & Dunker, A. K. 2005 Comparing
and combining predictors of mostly disordered proteins.
Biochemistry 44, 1989–2000. (doi:10.1021/bi047993o)

23 Wright, P. E. & Dyson, H. J. 2009 Linking binding and
folding. Curr. Opin. Struct. Biol. 19, 31–38. (doi:10.
1016/j.sbi.2008.12.003)

24 Derreumaux, P., Vergoten, G. & Lagant, P. 1990 A
vibrational molecular force field of models compounds
J. R. Soc. Interface (2012)
with biological interest. 1. Harmonic dynamics of crystal-
line urea at 123 K. J. Comput. Chem. 11, 560–568.
(doi:10.1002/jcc.540110504)

25 Karplus, M. & McCammon, J. A. 2002 Molecular
dynamics simulations of biomolecules. Nat. Struct. Biol.
9, 646–652. (doi:10.1038/nsb0902-646)

26 Derreumaux, P. 1997 Folding a 20 amino acid ab peptide
with the diffusion process-controlled Monte Carlo
method. J. Chem. Phys. 107, 1941–1947. (doi:10.1063/
1.474546)

27 Derreumaux, P. 1997 A diffusion process-controlled
Monte Carlo method for finding the global energy mini-
mum of a polypeptide chain.1. Formulation and test on
a hexadecapeptide. J. Chem. Phys. 106, 5260–5270.
(doi:10.1063/1.473525)

28 Derreumaux, P. 2000 Generating ensemble averages for
small proteins from extended conformations by Monte
Carlo simulations. Phys. Rev. Lett. 85, 206–209.
(doi:10.1103/PhysRevLett.85.206)

29 Tozzini, V. 2005 Coarse-grained models for proteins.
Curr. Opin. Struct. Biol. 15, 144–150. (doi:10.1016/j.
sbi.2005.02.005)

30 Maupetit, J., Tuffery, P. & Derreumaux, P. 2007 A
coarse-grained protein force field for folding and structure
prediction. Proteins 69, 394–408. (doi:10.1002/prot.
21505)

31 Solernou, A. & Fernandez-Recio, J. 2011 pyDockCG:
new coarse-grained potential for protein–protein dock-
ing. J. Phys. Chem. B 115, 6032–6039. (doi:10.1021/
jp112292b)

32 Tama, F. & Sanejouand, Y. H. 2001 Conformational
change of proteins arising from normal modes calculations.
Protein Eng. 14, 1–6. (doi:10.1093/protein/14.1.1)

33 Dobbins, S. E., Lesk, V. I. & Sternberg, M. J. 2008
Insights into protein flexibility: the relationship between
normal modes and conformational change upon
protein–protein docking. Proc. Natl Acad. Sci. USA
105, 10 390–10 395. (doi:10.1073/pnas.0802496105)

34 Nicolay, S. & Sanejouand, Y. H. 2006 Functional modes
of proteins are among the most robust. Phys. Rev. Lett.
96, 078104. (doi:10.1103/PhysRevLett.96.078104)

35 Tirion, M. M. 1996 Large amplitude elastic motions in
proteins from a single-parameter, atomic analysis. Phys.
Rev. Lett. 77, 1905–1908. (doi:10.1103/PhysRevLett.
77.1905)

36 Tama, F., Valle, M., Frank, J. & Brooks III, C. L. 2003
Dynamic reorganization of the functionally active ribo-
some explored by normal mode analysis and cryo-
electron microscopy. Proc. Natl Acad. Sci. USA 100,
9319–9323. (doi:10.1073/pnas.1632476100)

37 Batista, P. R., Robert, C. H., Maréchal, J.-D., Hamida-
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