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The critical issues in docking include the prediction of the correct binding pose and the accurate estimation
of the corresponding binding affinity. Different docking methodologies have all been successful in reproducing
the crystallographic binding modes but struggle when predicting the corresponding binding affinities. The
aim of this work is to evaluate the performance of the MM-GB/SA rescoring of docking poses in structure-
based lead optimization. To accomplish that, a diverse set of pharmaceutically relevant targets, including
CDK2, FactorXa, Thrombin, and HIV-RT were selected. The correlation between the MM-GB/SA results
and experimental data in all cases is remarkable. It even qualifies this approach as a more attractive alternative
for rank-ordering than the Free Energy Perturbation and Thermodynamic Integration methodologies because,
while as accurate, it can handle more structurally dissimilar ligands and provides results at a fraction of the
computational cost. On the technical side, the benefit of performing a conformational analysis and having
an ensemble of conformers to represent each ligand in the unbound state during the MM-GB/SA rescoring
procedure was investigated. In addition, the estimation of conformational entropy penalties for the ligands
upon binding, computed from the Boltzmann distribution in water, was evaluated and compared to a commonly
used approach employed by many docking scoring functions.

INTRODUCTION

The computational methodologies to understand structural
and energetic relationships to binding vary in speed and
accuracy. The molecular dynamics (MD) and Monte Carlo
(MC) simulations coupled with free-energy perturbation
(FEP) or thermodynamic integration (TI) calculations are the
most rigorous computational approaches currently used to
estimate relative binding affinities.1–6 Although these meth-
ods have provided impressive results for several protein–li-
gand systems, they are computationally intensive and have
generally been applied to study a small number of ligands
in a congeneric series.

The estimation of binding affinities may be accomplished
with a more approximate method such as the linear response
(LR) theory, originally introduced by Åqvist.7 The method
was generalized by Jorgensen and co-workers to include not
only the interaction energies for the ligands in the solvated
protein–ligand complexes and in the unbound state but also
other sensible descriptors. Counts of hydrogen bonds, number
of rotatable bonds for the ligands, and separate components
of SASA (solvent accessible surface area), e.g., the hydro-
phobic, hydrophilic, and aromatic surface areas, are also
considered in the multivariate fitting approach.8–13 The LR
theory is significantly less demanding computationally than
the FEP and TI alternatives because no intermediate state is
required to compute binding affinities, but still considerably
slow due to the sampling of the phase space.

Small-molecule docking is designed to orient and score a
large number of molecules for complementarity against a

macromolecular binding site in a short period of time.14–20

The critical issues in docking include the prediction of the
correct binding pose and the accurate estimation of the
corresponding binding affinity. Despite the enormous size
of the conformational space for the ligands, different docking
methodologies, e.g., force-field-based, empirical, and knowl-
edge-based, have all been successful in reproducing the
crystallographic binding modes.21–25 However, they still need
improvement when it comes to predicting binding
affinities,26–29 particularly the scoring function terms
responsible for the estimation of the ligand desolvation,
intramolecular, and conformational entropy penalties upon
binding. This has been discussed recently, where the
change from the unbound to the bound conformation and
the loss of conformational degrees of freedom for the
ligand have been collectively termed “conformer focus-
ing”.30

Since the docking algorithms provide good-quality binding
poses, an energy function with a more physically reasonable
description of binding contributions can be employed to
rescore the docking results. MM-PB/SA calculations, pio-
neered by Kollman and co-workers, use a combination of
molecular mechanics and continuum solvation to compute
average binding energies for configurations extracted from
MD simulations of the unbound and bound states.31a The
encouraging results obtained with this methodology, despite
limitations,31b have inspired several authors to use molecular-
mechanics-based scoring functions with GB/SA32 as the
implicit solvent model in the rescoring process. When
compared to docking scoring functions, the MM-GB/SA
procedure provided more accurate docking poses, improved
enrichment in the virtual screening of databases, and superior
correlation between calculated binding affinities and experi-

* Corresponding author phone: (860) 686-2915; e-mail: cristiano.guimaraes@
pfizer.com.

† Current address: Pfizer Global Research & Development, 558 Eastern
Point Rd, B220/351A, Groton, CT 06340.

J. Chem. Inf. Model. 2008, 48, 958–970958

10.1021/ci800004w CCC: $40.75  2008 American Chemical Society
Published on Web 04/19/2008



mental data in the lead optimization of four sets of congeneric
kinase inhibitors.33

The aim of this work is to investigate the performance of
MM-GB/SA rescoring in structure-based lead optimization
for a more diverse set of pharmaceutically relevant targets,
including CDK2, FactorXa, Thrombin, and HIV-RT. Another
goal is to study the benefit of doing a conformational analysis
and having an ensemble of conformers to represent each
ligand in the unbound state; most of the MM-GB/SA
methodologies in the literature relax the bound state con-
formation for the ligand to its nearest energy minimum in
water when performing the rescoring. Finally, the estimation
of conformational entropy penalties for the ligands upon
binding, computed from the Boltzmann distribution in water,
is evaluated and compared to a commonly used approach
employed by many docking scoring functions, which penal-
izes each rotatable bond by 0.65 kcal/mol.30,34

METHODS

Docking. The crystal structures for CDK2, Factor Xa,
Thrombin, and HIV-RT complexed with the inhibitors
Indirubin-5-sulfonate (PDB ID: 1E9H), ZK-807834 (PDB
ID: 1FJS), 4-TAPAP (PDB ID: 1ETT), and UC-781 (PDB
ID: 1RT4), respectively, were employed in the docking
calculations performed by the Glide 4.0 XP scoring
function.24,35 Although there is a complex between CDK2
and an inhibitor belonging to the selected congeneric series
(Table 1) available in the Protein Data Bank (PDB ID:

1FVT), this structure is not consistent with the conditions
for the biological assay; it is not complexed to cyclin A and
phosphorylated on Thr160. Figures 1a and 1b illustrate the
differences between the 1FVT and 1E9H CDK2 structures.
The absence of cyclin A and Thr160 phosphorylation in
1FVT cause repositioning of the C-helix and a major
conformational change on the activation loop that render
CDK2 inactive. The inhibitor Indirubin-5-sulfonate in 1E9H,
however, does not have the sulfonamide group that is
sandwiched between the D86 and K89 residues, like in the
1FVT complex. The absence of this interaction causes a
conformational change on Q85 and K89. Since the series of
selected CDK2 inhibitors (Tables 1 and 2) displays this
interaction with the enzyme, the Q85 and K89 side-chain
conformations in 1E9H were changed to reflect the confor-
mation adopted in the 1FVT crystal structure. After that, the
inhibitor in 1FVT was optimally overlaid in the modified

Table 1. Enzymatic Activities of Selected CDK2 Inhibitors
(Core 1)

R1 R2 R3 IC50 (nM)a

H H H 120
CH2CH3 H H 7.9
CH(CH3)2 H H 2.5
CH2CH(CH3)2 H H 1.2
OCH(CH3)2 H H 3.4
OPh H H 13
NO2 H H 2400
H F H 34
H Cl H 43
H Br H 60
H CH3 H 46
H OH H 10
H OCH3 H 12
H NH2 H 74
H SO2CH3 H 16
H SO2NH2 H 43
H CONH2 H 4.5
H CON(CH3)2 H 17
H H Br 43
H H CH2CH3 21
H H CH(CH3)2 75
Cl CH3 H 13
Cl OCH3 H 54

a Ref 37.

Figure 1. (a) 1FVT and (b) 1E9H crystal structures between CKD2
and inhibitors. (c) Modified 1E9H structure complexed to the 1FVT
inhibitor used in the docking calculations.
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1E9H binding site and the generated complex used as a
starting point in the CDK2 docking calculations (Figure 1c).
All complexes were submitted to a series of restrained, partial
minimizations using the OPLS_2005 force field.36 Before
the docking calculations, the selected congeneric series of
CDK2,37 Factor Xa,38 and Thrombin39 inhibitors shown in
Tables 13 and Figure 2 and the non-nucleoside inhibitors of
HIV-RT40 illustrated in Figure 3 were submitted to a pre-
energy minimization using the OPLS_2005 force field and
the GB/SA method as the implicit water model.32 In order
to accommodate for the fact that the protein structure used
for docking will not in general be optimized to fit a particular
ligand, the van der Waals radii for nonpolar protein atoms
were scaled by a factor of 0.8, while those for the ligands
were not scaled.

MM-GB/SA Rescoring. In our implementation of the
MM-GB/SA rescoring (Figure 4), a conformational search
for the inhibitors in the unbound state and energy minimiza-
tion for the complexes using OPLS_2005 and GB/SA within
MacroModel41 were performed. Applying energy minimiza-
tion for the complexes rather than MD simulations greatly
increases computational efficiency and provides a method
with a time scale compatible with synthetic chemistry-biolog-
ical test cycles. On the other hand, lack of sampling could
in theory pose a significant limitation on the method since
the protein would not be able to relax to accommodate
different scaffolds after docking. This problem should be
minimized when scoring a congeneric series. In addition, a
recent study suggests that a single, relaxed structure for each
complex provides superior results when compared to the
standard averaging over MD trajectories.42 A possible
explanation for this is the introduction of noise in the scoring
as each complex could be visiting different regions of the
phase space due to short trajectories.

The Monte Carlo multiple minimum (MCMM) method
implemented in MacroModel41 was used to perform the
conformational analysis in the unbound state. This method
is highly efficient in performing global searching, exploring
close as well as distant areas of the potential energy surface.
To ensure that the stochastic search was exhaustive and
approached convergence, the extended protocol for the
torsion sampling41 and energy minimization to a low gradient
norm were employed. All conformers within 5.0 kcal/mol
from the lowest-energy conformer were retained. A root-
mean-square deviation (rmsd) value of 0.3 Å for heavy atoms
and hydrogens connected to heteroatoms was used to obtain
unique conformations. Assuming a Boltzmann distribution,
the probabilities for each conformer (Pi) were calculated and
the Boltzmann-averaged intramolecular energy and solvation
free energy in the unbound state for every compound
obtained. The conformational entropies (Sconf) were com-
puted from the probabilities using eq 1, where kB is the
Boltzmann constant.

Sconf ) -kB∑
i)i

n

Pi ln Pi (1)

To better account for the protein flexibility, the best pose
for each inhibitor was energy-minimized in the bound state.
The conjugate gradient minimization scheme that uses the
Polak-Ribiere first derivative method (PRCG), considered
the best general method for energy minimization,41 was
employed with a very tight convergence threshold. In the
energy minimization, no constraints were applied to residues
within 5 Å from the center of the system. A second shell of
3 Å around the first shell was defined, and constraints of 50
kcal/mol ·Å2 were applied to the residues therein. The
remaining residues were held fixed. This was done with the
purpose of reducing the aforementioned noise in the scoring;
each complex could be driven to different local minima in a
fully flexible energy minimization scheme. After the energy
minimization step, the protein energy (EPTN) values for all
complexes were extracted. This term describes the protein
deformation imposed by each ligand. Besides EPTN, the
energy-minimized structures for the complexes provided
the intramolecular energies and solvation free energies for
the ligands in the protein environment and the protein–ligand

Table 2. Enzymatic Activities of Selected CDK2 Inhibitors
(Core 2)

R1 R2 R3 IC50 (nM)a

H H H 690
CH3 H H 360
CH3 H Cl 22
H CH2OH H 54
H H N(CH3)2 310

a Ref 37.

Table 3. Enzymatic Activities of Selected Factor Xa Inhibitors

R1 R2 R3 Ki (nM)a

CONH2 H H 280
CONHMe H H 1200
CONMe2 H H 80
COMe H H 1400
NO2 H H 2500
NH2 H H 3300
NMe2 H H 160
NHEt H H 530
OMe H H 1350
OCF3 H H 1800
F H H 3200
Cl H H 1700
OH H H 5000
CF3 H H 1600
CONMe2 5-OMe H 140
NMe2 2-Me H 320
CONMe2 H 6-NH2 14
CONMe2 H 6-OH 1.8
NMe2 H 6-Me 1200
NMe2 H 6-NH2 64
NMe2 H 6-OH 3
NMe2 H 6-OMe 1400

a Ref 38.
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intermolecular van der Waals (EVDW) and electrostatic
(EElect) interaction energies. In the bound state, it was
assumed that there was only one conformation accessible to
each ligand, and its conformational entropy is therefore zero.
In this manner, the binding energy (∆Gbind) was calculated
as shown in eq 2.

∆Gbind ) ∆Eintra + ∆Gsolv -
T∆Sconf + EVDW + EElect + EPTN (2)

In eq 2, ∆Eintra and ∆Gsolv are the intramolecular and
desolvation penalties for each ligand upon binding. These
penalties reflect how their intramolecular energies and

Figure 2. Enzymatic activities of selected Thrombin inhibitors. Experimental data from ref 39.

Figure 3. Enzymatic activities of selected HIV-RT inhibitors. Experimental data from ref 40.
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solvation free energies change upon transfer from the
unbound to the bound state. Similarly, -T∆Sconf is the ligand
conformational entropy penalty, multiplied by the temper-
ature to convert it into free energy. The final ranking was
obtained by calculating relative binding energies (∆∆Gbind)
using the top-scoring inhibitor of each target as a reference.

Unbound State Representation. A common procedure
employed in the literature to represent the unbound state for
each ligand is to relax its bound state conformation to the
nearest local energy minimum in water.33 It is obvious that
the MM-GB/SA scoring in this case would lack conformer-
focusing-type contributions to protein–ligand binding.30 To
investigate the benefit of having an ensemble of conformers
in the unbound state as an alternative, the ∆Eintra and ∆Gsolv

penalties in the binding of ligands to biologically relevant
targets were calculated using both the single conformer and
ensemble representations. To accomplish that, one hundred
complexes were selected from the Protein Data Bank,
including 4 Cox-2, 18 CDK2, 13 Factor Xa, 18 HIV-RT, 14
p38, 16 Thrombin, 5 GSK3, 6 HIV protease, and 6 DHFR
complexes (Table 4). The correlations between the experi-
mental data for the selected CDK2, Factor Xa, Thrombin,
and HIV-RT inhibitors and the MM-GB/SA scoring using
the single conformer representation were also investigated
to further evaluate both unbound state descriptions. It is
important to note that the MM-GB/SA scoring in this case
does not include the conformational entropy penalty, as no
conformational analysis is performed in the unbound state.
Finally, the -T∆Sconf penalties for the inhibitors of the data
set shown in Table 4 were computed according to eq 1 and
compared to the approach that penalizes each rotatable bond
by 0.65 kcal/mol.

RESULTS AND DISCUSSION

Unbound State Analysis. Figure 5 compares the ∆Gsolv

and ∆Eintra penalties, calculated as defined above, for 100

conformationally diverse inhibitors upon binding to their
corresponding biological targets (Table 4) using the single
conformer and ensemble representations for the unbound
state. While ∆Gsolv is not dramatically affected by the
description of the unbound state (Figure 5a), ∆Eintra may be
quite different whether one conformation or a collection of
conformers is used. It can be underestimated by as much as
20 kcal/mol (Figure 5b). This is obviously more drastic for
the cases where the local energy minimum found in water
upon relaxation of the bound conformation is not close in
energy to the global energy minimum, which dominates the
ensemble average. Figure 5c shows that the combined
intramolecular and desolvation penalties in the single con-
former representation (∆Eintra + ∆Gsolv) are underestimated
with respect to the one calculated using the ensemble
representation (〈∆Eintra〉 + 〈∆Gsolv〉) by approximately the
energy gap value between the local and global minima in
water (∆Elocal-global). For example, if the energy gap in water
is ca. 6 kcal/mol, so is the difference between the combined
penalties using the ensemble average and using only one
conformer. As shown in Figure 5d, a small energy gap
occurred in ca. 50% of the cases, with the largest gaps for
ligands having more rotatable bonds (Figure 5e). In the bound
state, the ligands are deformed as much as possible to
maximize their interactions with the protein, and those with
an increased degree of flexibility are more easily deformed.
In these cases, the probability of finding the global minimum
in water when relaxing the bound conformation is very low.

It can also be noted in Figure 5b that some of the
calculated ∆Eintra and 〈∆Eintra〉 penalties upon binding are
very large. This problem has its origin in the force field
function. Force fields are fairly accurate at providing relative
energies between energy minima but tend to overestimate
energy barriers. Since the bound conformations for the
ligands are not energy minima in the potential energy surface,
the calculated intramolecular penalties can be overestimated.

Figure 4. Schematic representation of the MM-GB/SA rescoring procedure.
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This is particularly true when using the ensemble representa-
tion for the unbound state. 〈∆Eintra〉 is generally larger
because the high intramolecular energy for the ligand bound
conformation is compared to an average intramolecular
energy dominated by the global minimum conformation in
the unbound state. The corresponding ∆Eintra, calculated
using the single conformer representation, tends to be smaller
because the reference conformation in the unbound state is
often a local minimum. Although the values are larger for
〈∆Eintra〉 and do not reflect typical intramolecular penalties
for active compounds that would be obtained by more
sophisticated energy functions, 〈∆Eintra〉 is still more physi-
cally meaningful than ∆Eintra due to the more faithful
representation of the unbound state. In addition, the errors
in both 〈∆Eintra〉 and ∆Eintra should largely cancel when
computing the relative binding energies (∆∆Gbind) to obtain
the final rank for congeneric series.

Figure 6 compares the estimation of the -T∆Sconf penalties
obtained from the Boltzmann distribution with the approach
that penalizes each rotatable bond that becomes frozen upon
binding by 0.65 kcal/mol. This last procedure assumes that
each rotatable bond has three degenerate conformations,
giving a total of 3N conformations, all equal in energy, for
a molecule with N rotatable bonds. The data set in Table 4
contains conformationally diverse compounds, with the
number of rotatable bonds ranging from 0 to 16. The
-T∆Sconf penalties calculated for this data set using
the constant penalty approximation are significantly over-
estimated with respect to the ones obtained from the
Boltzmann distribution. This can be illustrated by the HIV-1
protease inhibitor (PDB ID: 3AID) shown in Scheme 1. The
-T∆Sconf value calculated by the constant penalty ap-
proximation is 9.1 kcal/mol since this compound has 14
rotatable bonds. The one calculated from the Boltzmann

Table 4. Complexes Selected from the Protein Data Bank

PDB ID resolution, Å protein PDB ID resolution, Å protein

1CX2 3.00 COX-2 1TKX 2.85 HIV-RT
2AYL 2.00 COX-2 1TKZ 2.81 HIV-RT
4COX 2.90 COX-2 1VRU 2.40 HIV-RT
1PXX 2.90 COX-2 1A9U 2.50 p38
1DI8 2.20 CDK2 1BL6 2.50 p38
1DM2 2.10 CDK2 1BL7 2.50 p38
1E1V 1.95 CDK2 1M7Q 2.40 p38
1E9H 2.50 CDK2 1OUK 2.50 p38
1FVT 2.20 CDK2 1OUY 2.50 p38
1FVV 2.80 CDK2 1OVE 2.10 p38
1HDV 1.90 CDK2 1W7H 2.21 p38
1JSV 1.96 CDK2 1W83 2.50 p38
1KE5 2.20 CDK2 1WBS 1.80 p38
1KE6 2.00 CDK2 1YQJ 2.00 p38
1KE7 2.00 CDK2 1ZZL 2.00 p38
1OI9 2.10 CDK2 2BAL 2.10 p38
1W0X 2.20 CDK2 2GFS 1.75 p38
2A0C 1.95 CDK2 1D4P 2.00 Thrombin
2B52 1.88 CDK2 1DWC 3.00 Thrombin
2B53 2.00 CDK2 1K22 1.93 Thrombin
2B54 1.85 CDK2 1KTS 2.40 Thrombin
2EXM 1.80 CDK2 1KTT 2.10 Thrombin
1EZQ 2.20 Factor Xa 1MU6 1.99 Thrombin
1F0R 2.10 Factor Xa 1OYT 1.67 Thrombin
1FJS 1.92 Factor Xa 1SB1 1.90 Thrombin
1IOE 2.90 Factor Xa 1T4U 2.00 Thrombin
1IQE 2.90 Factor Xa 1TA2 2.30 Thrombin
1IQH 3.00 Factor Xa 1WAY 2.02 Thrombin
1IQL 2.70 Factor Xa 1YPE 1.81 Thrombin
1IQN 2.60 Factor Xa 1YPK 1.78 Thrombin
1LQD 2.70 Factor Xa 1YPM 1.85 Thrombin
1MQ5 2.10 Factor Xa 1ZGI 2.20 Thrombin
1MQ6 2.10 Factor Xa 1ZGV 2.20 Thrombin
1NFW 2.10 Factor Xa 1Q3W 2.30 GSK3
2BMG 2.70 Factor Xa 1Q4L 2.77 GSK3
1EET 2.73 HIV-RT 1Q5K 1.94 GSK3
1EP4 2.50 HIV-RT 1R0E 2.25 GSK3
1IKW 3.00 HIV-RT 1UV5 2.80 GSK3
1IKY 3.00 HIV-RT 1QBU 1.80 HIV-1 protease
1KLM 2.65 HIV-RT 1OHR 2.10 HIV-1 protease
1LW0 2.80 HIV-RT 1HPV 1.90 HIV-1 protease
1RT1 2.55 HIV-RT 1HPX 2.00 HIV-1 protease
1RT2 2.55 HIV-RT 1TCX 2.30 HIV-1 protease
1RT4 2.90 HIV-RT 3AID 2.50 HIV-1 protease
1RT6 2.90 HIV-RT 1AOE 1.60 DHFR
1RT7 3.00 HIV-RT 1DLR 2.30 DHFR
1S6P 2.90 HIV-RT 1IA1 1.70 DHFR
1S6Q 3.00 HIV-RT 1DG5 2.00 DHFR
1S9E 2.60 HIV-RT 1DG7 1.80 DHFR
1SUQ 3.00 HIV-RT 1KMS 1.09 DHFR
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distribution is only 0.7 kcal/mol. Although this compound
is apparently very flexible with almost 100 conformations
within 5 kcal/mol from the global energy minimum in water,
the conformational entropy calculated from the Boltzmann
distribution is small because the lowest and the second lowest
energy conformers have probabilities of 73% and 14%, while
the remaining ones have very small values. Both low-energy
conformations are stabilized by an intramolecular hydrogen
bond between the amide NH and the carbamate carbonyl
group. Hydrophobic collapse of the aromatic rings that
provides additional stabilization for these conformations was
also observed. Hence, the ranking of conformationally
diverse compounds by scoring functions that employ the
constant penalty approximation should be adversely affected.

Interestingly, the -T∆Sconf penalties calculated from the
Boltzmann distribution for molecules that are so diverse in
their degree of flexibility have a very small range, from 0 to
ca. 3 kcal/mol (Figure 6). When analyzing each congeneric
series, the typical range for this term was about only 1 kcal/
mol, much narrower than the other terms in the scoring,
indicating that the conformational entropy penalty should not
contribute significantly for rank-ordering. However, it is
important to have in mind that inaccuracies in the force field
and in the GB/SA method might lead to imperfections in
the weighing of the conformer distributions and, conse-
quently, poor estimation of the -T∆Sconf penalties.

MM-GB/SA Rescoring. The first analyzed target was
CDK2. The docking method provided binding poses for all

Figure 5. (a) Desolvation and (b) intramolecular penalties for 100 conformationally diverse inhibitors upon binding to their corresponding
biological targets obtained using the single conformer (∆Gsolv and ∆Eintra) versus ensemble representations (〈∆Gsolv〉 and 〈∆Eintra〉). (c)
Underestimation of the combined (∆Eintra + ∆Gsolv) in the single conformer representation with respect to the one obtained using the
ensemble representation (〈∆Eintra〉 + 〈∆Gsolv〉) versus energy difference between the local and global minima in water (∆Elocal-global). (d)
∆Elocal-global for 100 conformationally diverse inhibitors. (e) Number of rotatable bonds versus ∆Elocal-global.

964 J. Chem. Inf. Model., Vol. 48, No. 5, 2008 GUIMARÃES AND CARDOZO



ligands in the 1E9H modified binding site (Figure 1c) that
are consistent with the one displayed by the inactivated 1FVT
experimental structure (Figure 1a). In spite of that, there is
no correlation between the GlideXP score and the experi-
mental data (Figure 7a). Rescoring with MM-GB/SA greatly
increases the correlation, with superior results obtained using
the ensemble representation for the unbound state (Figures
7b) when compared to the single conformer representation
(Figure 7c). This is not caused by the lack of conformational
entropic contributions in the latter. As discussed, the
calculated -T∆Sconf penalties do not contribute significantly
for rank-ordering because they are very similar for all
compounds. Rather, the lower correlation is caused by a
single compound. In almost all cases, the local energy
minimum found when relaxing the bound state conformation
is the global energy minimum since these molecules are very
rigid. The only exception is for the compound where R2 is
SO2NH2, shown in Table 1 and highlighted in Figure 7c.
The local energy minimum found in water in this case is
2.5 kcal/mol higher in energy than the global minimum,
causing an underestimation of the combined desolvation and
intramolecular penalties by approximately the same amount.
Consequently, this compound is predicted to bind more
favorably than it actually does, which is enough to negatively
affect the correlation with experiment when using the single
conformer representation.

Next, a series of Factor Xa inhibitors that have an
increased degree of flexibility with 5–6 rotatable bonds were
analyzed. As mentioned above, more flexible molecules have
larger energy gaps between the local energy minimum found
in water upon relaxation of the bound conformation and the
corresponding global minimum. This can adversely affect

the estimation of the combined intramolecular and desolva-
tion penalties in the single conformer representation and have

Figure 6. Estimation of the -T∆Sconf penalties for 100 conformationally diverse inhibitors upon binding to their corresponding biological
targets obtained from the Boltzmann distribution and using the constant penalty approximation (0.65 kcal/mol per rotatable bond).

Scheme 1. HIV-1 Protease Inhibitor (PDB ID: 3AID)

Figure 7. Correlation between experimental IC50 values for CDK2
inhibitors and (a) GlideXP scoring, (b) MM-GB/SA scoring using
ensemble representation for the unbound state, and (c) MM-GB/
SA scoring using single conformer representation.
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a negative impact on the correlation with experiment. As
demonstrated by the good agreement between the experi-
mental binding mode for the inhibitor in the 1FJS crystal
structure and the predicted conformation for a closely related
analogue (Figure 8), accurate binding poses for the selected
Factor Xa congeneric series are obtained by Glide. Rescoring
with the MM-GB/SA method significantly improves cor-
relation with the experimental Ki’s over docking, with no
significant difference between the unbound state representa-
tions (Figure 9). In this case, the local energy minima in
water for all compounds lie 1–3 kcal/mol above the global
energy minima. The relatively small range for the energy
gaps is caused by the similar degree of flexibility for the
inhibitors in the congeneric series. Therefore, the corre-
sponding underestimation of the combined intramolecular
and desolvation penalties in the single conformer representa-
tion is not enough to deteriorate the results, especially
because of the large dynamic range for the MM-GB/SA score
(Figure 9).

The next system investigated consists of a series of
Thrombin inhibitors. Again, Glide provides accurate binding
poses (Figure 10) but struggles when scoring this congeneric
series (Figure 11a). Excellent results are obtained with the
MM-GB/SA method, with superior correlation using the
ensemble representation for the unbound state (Figures 11b
and 11c). Since this series not only is more flexible than the
Factor Xa inhibitors but also has an increased range of
flexibility with the number of rotatable bonds varying from
8 to 11, the local energy minima found in water with the
single conformer representation are 3–7 kcal/mol higher in
energy than the corresponding global minima. In this case,
the magnitude of the noise in the combined intramolecular
and desolvation penalties with respect to the more com-
pressed dynamic range for the MM-GB/SA score causes a
more significant deterioration of the correlation obtained with
single conformer representation.

Despite the good results, the MM-GB/SA methodology
is not perfect. For example, Figures 11b and 11c show an
outlier compound, predicted to bind less favorably than
observed experimentally. Analysis of the MM-GB/SA terms
revealed that the outlier compound, where R is CH3 (Figure
2), has a ∆Gsolv penalty of 14.7 kcal/mol, while a pair of
closely related analogues where R is H and NH2 have ∆Gsolv

penalties of 12.9 and 13.0 kcal/mol, respectively. The

corresponding ∆Gsolv penalties obtained using the single
conformer representation are 12.6, 9.7, and 10.7 kcal/mol.
The results suggest that the ∆Gsolv penalties for the outlier

Figure 8. Comparison between the observed conformation for the
inhibitor in the 1FJS crystal structure (brown) and the predicted
binding mode for a closely related analogue (green) where R1, R2,
and R3 are CONMe2, H, and 6-OH, respectively (see Table 3).

Figure 9. Correlation between experimental Ki values for Factor
Xa inhibitors and (a) GlideXP scoring, (b) MM-GB/SA scoring
using ensemble representation for the unbound state, and (c) MM-
GB/SA scoring using single conformer representation.

Figure 10. Comparison between the observed conformation for the
inhibitor in the 1ETT crystal structure (brown) and the predicted
binding mode for a closely related analogue (green) with a Ki value
of 52.4 nM (see Figure 2).

966 J. Chem. Inf. Model., Vol. 48, No. 5, 2008 GUIMARÃES AND CARDOZO



compound were overestimated in both cases. The methylation
of the benzamidine group should make the desolvation
process more favorable due to the reduction of the number
of hydrogen bonds with the solvent. This is clearly a result
of inaccuracies in the GB/SA method.

Finally, a set of eleven HIV-RT inhibitors containing seven
different scaffolds were analyzed. This more diverse set
should pose an extra challenge since inaccuracies in the force
field and the GB/SA method that would affect the MM-GB/
SA score are less likely to cancel. In addition, different
scaffolds could potentially induce unique conformational
changes in the protein that a rigid receptor docking followed
by a constrained energy minimization would not be able to
capture, especially in the case of a plastic enzyme like HIV-
RT. In spite of its plasticity, the protein conformations of
six complexes for which crystal structures are available are

very similar: their PDB IDs are 1IKW, 1RT1, 1VRU, 1TVR,
1VRT, and 1RT4. Consequently, the binding poses obtained
from cross-docking of the respective inhibitors Sustiva,
MKC-442, Loviride, 9-Cl-TIBO, and Nevirapine into the
1RT4 crystal structure, the complex between HIV-RT and
UC-781, agree very well with the corresponding observed
X-ray conformations. The rmsd between the predicted and
the observed structures for five of the inhibitors is below
1.0 Å (Figure 12). The only inhibitor that presented an rmsd
value above 1.0 Å was 9-Cl TIBO. This larger rmsd value
can be attributed to the different position for the methyl group
attached to the seven-membered ring and to the orientation
of the flexible 3,3-dimethyl-allyl group.

In the case of HIV-RT, the correlation between the
GlideXP score and the experimental data is far superior than
for the other systems studied (Figure 13a). A similar
correlation is obtained with the MM-GB/SA rescoring with
no difference between the single conformer and ensemble
representations (Figures 13b and 13c). This should be
expected since this diverse set is composed of fairly rigid
compounds. The high degree of rigidity could also be
responsible for the good results obtained with the GlideXP
score. The limitations of the docking scoring function
associated with inaccuracies in the estimation of intramo-
lecular, desolvation, and conformational entropy penalties
should be minimized in this case.

The fact that the MM-GB/SA method succeeded for this
diverse set of inhibitors indicates that potential problems with
the force field and the GB/SA method and the ligand/protein
induced fit effects did not play an important role. Obviously,
this will not always be the case. The first problem is hard to
foresee, and its only solution is reparameterization. The
second could in theory be addressed using induced fit
docking.43 However, even if the method correctly reproduces
the different protein conformations induced by each scaffold,
it is unclear whether the force field would accurately compute
the large variations in EPTN (Figure 4), one of the MM-GB/
SA scoring terms, between each conformation adopted by
the protein. Investigation of more complicated cases than
HIV-RT is warranted.

Finally, Figures 7, 9, 11, and 13 show a very large dynamic
range for the MM-GB/SA scores when compared to the
experimental range. It is possible that this has its origin in
the application of a protein dielectric constant of 1 in a model
where protein motions and polarization are not taken into
account. In this case, electrostatic interactions are not shielded
enough, and protein–ligand intermolecular electrostatic at-
tractions and repulsions are overestimated, causing the large
separation of potent and weak compounds. Another possible
explanation for the large dynamic range is associated with
the lack of a term in the MM-GB/SA scoring that describes
enthalpy–entropy compensation. Since translational, rota-
tional, and vibrational entropy changes upon binding are
ignored, the ligands that interact the most favorably with
the protein are not entropically penalized due to restriction
of their vibrational modes in the binding site. Although not
essential for congeneric series, as demonstrated by the good
correlation obtained with experimental data, the aforemen-
tioned effects are likely very important when ranking
different chemical classes and will be the subject of future
research.

Figure 11. Correlation between experimental Ki values for Throm-
bin inhibitors and (a) GlideXP scoring, (b) MM-GB/SA scoring
using ensemble representation for the unbound state, and (c) MM-
GB/SA scoring using single conformer representation.
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CONCLUSIONS

The performance of the MM-GB/SA rescoring of docking
poses in structure-based lead optimization was investigated
in this work. Overall, the correlation with experiment
obtained with the physics-based scoring is far superior to
docking. The remarkable results for all systems even qualify
the MM-GB/SA approach as a more attractive alternative to
the FEP and TI methodologies for rank-ordering. It can be
as accurate, handle more structurally dissimilar ligands, and
provide results at a fraction of the computational cost.

Regarding the unbound state representation, since flexible
molecules are more easily deformed by the protein to
maximize the intermolecular interactions, the relaxation of
the bound state conformation in water, a procedure adopted
in the single conformer representation, will more likely not
find the global minimum or a conformation that is close in
energy. As a consequence, the corresponding underestimation
and noise in the combined intramolecular and desolvation
penalties in the single conformer representation deteriorate
the results for congeneric series containing more flexible
ligands, especially for series that have a large range of

Figure 12. Comparison between the predicted and experimental X-ray binding modes for six HIV-RT inhibitors. The root-mean-square
deviation (rmsd) values are shown. The predicted structures for the inhibitors are in light gray. The 1RT4 protein structure used in the
docking calculations is also in light gray.

968 J. Chem. Inf. Model., Vol. 48, No. 5, 2008 GUIMARÃES AND CARDOZO



flexibility. The unbound state representation, however, is not
a factor when dealing with more rigid compounds.

It has also been demonstrated that a penalty of 0.65 kcal/
mol per rotatable bond in the ligand that becomes frozen
upon binding significantly overestimates the conformational
entropy penalty with respect to the one obtained using a
Boltzmann distribution. Overall, the conformational entropy
penalty term in the latter is very small and similar for all
compounds, even when comparing ligands that are so diverse
in their degree of flexibility. This suggests that this contribu-
tion should not be important for rank-ordering, especially
when studying a congeneric series. However, it should be
noted that inaccuracies in the force field and in the GB/SA
method may lead to imperfections in the weighing of the
conformer distributions and, consequently, to poor estimation
of the conformational entropy penalty term.

Finally, the fact that the MM-GB/SA rescoring succeeded
for the diverse set of HIV-RT inhibitors must not be
generalized. Inaccuracies in the force field and the GB/SA
method, and the ligand/protein induced fit effects, are still
very likely to play important roles when dealing with
different scaffolds. While there is not much one can do for
the former, except for reparameterization, the latter can be
attenuated using induced fit docking. Nevertheless, even if
the different protein conformations induced by each scaffold
are correctly reproduced, it is unclear whether the force field
would accurately compute the large changes in the protein
energy, one of the MM-GB/SA scoring terms. Investigation
of these effects for other systems is definitely required.
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