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We demonstrate that using an all-atom molecular mechanics force field combined with an implicit solvent
model for scoring protein-ligand complexes is a promising approach for improving inhibitor enrichment in
the virtual screening of large compound databases. The rescoring method is evaluated by the extent to
which known binders for nine diverse, therapeutically relevant enzymes are enriched against a background
of ∼100 000 drug-like decoys. The improvement in enrichment is most robust and dramatic within the top
1% of the ranked database, that is, the first thousand compounds; below the first few percent of the ranked
database, there is little overall improvement. The improved early enrichment is likely due to the more realistic
treatment of ligand and receptor desolvation in the rescoring procedure. We also present anecdotal but
encouraging results assessing the ability of the rescoring method to predict specificity of inhibitors for
structurally related proteins.

1. INTRODUCTION

Structure-based virtual screening, also referred to as small-
molecule docking, orients and scores small molecules from
large chemical databases (typically tens or hundreds of thous-
ands of compounds) for complementarity to a macromolecu-
lar binding site. The results from virtual screening can be
used to prioritize compounds for experimental testing in a
cost-effective fashion;1-3 numerous studies have used such
an approach to identify novel inhibitors for various protein
targets.4-13

Despite these successes, docking remains a challenging
field in structure-based drug design. The critical issues
include the methods for exploring the conformational space
of the flexible ligands (sampling) and the estimation of
binding affinities for ligand-receptor complexes (scoring).
The scoring function is used both to identify the correct
binding orientation and conformation (docking pose) out of
enormous numbers of alternative modes for each ligand and
to rank different ligands with respect to their estimated
binding affinity. Therefore, to dock a large compound library,
a scoring function has to be simple, fast, and derived from
a physically reasonable equation.

Currently available scoring functions can be divided into
three classes: force-field-based (e.g., DOCK and AU-
TODOCK),14,15 empirical (e.g., FlexX and Glide),16,17 and
knowledge-based (e.g., PMF and SMoG).18,19 Force-field-
based scoring methods attempt to approximately calculate
the atomic interaction energies in the system. Empirical
scoring functions obtain parameter coefficients by fitting to
many crystal complexes with known binding affinities.
Knowledge-based functions are derived from a statistical
analysis of the interaction distances among different pairs
of atom types in cocrystallized protein-ligand structures.
Typically, scoring functions have been evaluated by testing

their ability to reproduce ligand binding poses or affinities;
however, none of them is able to predict experimental
binding free energies accurately in all situations.20-24 Several
studies have also evaluated the rate of “enrichment”sthe
increase in the proportion of active compounds found in
selected subsets from docking calculations compared with
the proportion expected from random selectionsobtained
using various scoring functions and docking algorithms.25

There is no fundamental reason that the same scoring
function must be used to both select the correct binding pose
for a ligand and rank ligands with respect to their estimated
binding affinities. It is possible to define two-step strategies
that decouple these two processes.10,17,24,26-28 The second
stage, used to rank the compounds, may then use a more
computationally intensive scoring procedure, because it is
applied only to single poses of ligands. Molecular-mechanics-
based scoring functions have been applied in a second stage
of this type to “rescore” docking results, either to improve
the ability to reproduce crystallographic binding poses24,29

or to rerank ligands in a virtual screening context.24,27

However, to date, there has been no large-scale evaluation
of the ability of such scoring functions toenrich known
binders among large numbers of decoys. Enrichment is
qualitatively more challenging than simply reproducing
crystallographic poses, in terms of both the demands on
algorithmic efficiency and the accuracy of the scoring
function. In evaluating a scoring function, it is also important
to use a diverse set of binding sites, each of which challenges
the scoring function in different ways, because of differences
in chemical composition and conformation.

Other methods related to the work reported here, in terms
of the use of molecular mechanics energy functions, include
free-energy perturbation (FEP), thermodynamic integration
(TI), one-window free energy grid (OWFEG), mining
minima, and molecular mechanics Poisson-Boltzmann/
surface area (MM-PB/SA). These methods have been suc-
cessfully used to estimate the relative, or in a few cases
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absolute, binding free energy of a series of docked ligands.30-34

However, these methods are computationally expensive and
have generally been applied only to dozens of compounds.
By limiting the sampling performed during the molecular
mechanics rescoring stage to simple minimization, we are
able to apply it to tens or hundreds of thousands of ligands
using a small Linux cluster.

In our previous work, a similar docking and rescoring
approach was shown to improve the ability to identify
substrates ofR-â barrel enzymes by virtual metabolite
screening.35 However, those enzymes have small and highly
charged binding sites, which is not the case for most drug
targets. Here, we demonstrate that an all-atom molecular
mechanics force field (OPLS-AA), combined with an implicit
solvent model (Generalized Born, GB), can be used to enrich
known inhibitors of a diverse set of therapeutically relevant
enzymes. Specifically, the maximum enrichment factors
observed increased for all nine of the test cases, by up to a
factor of 6. The improvement in enrichment is most robust
and dramatic within the top 1% of the ranked database, that
is, the first thousand compounds. The improved early
enrichment is likely due to the more realistic treatment of
ligand and, especially, receptor desolvation in the rescoring
procedure; the fully flexible minimization of the ligands in
the receptor during the rescoring stage may also contribute
to the improved enrichment. To our knowledge, this work
represents the most extensive test to date of the utility of an
all-atom force field/implicit solvent model scoring function
in the context of high-throughput virtual screening.

Although the rescoring method improves enrichment the
most within the top 1% of the ranked compound database,
in all cases, known inhibitors are enriched significantly
relative to random selection throughout at least the top 20%
of the ranked database. This behavior may be important if
the method is to be used in combination with high-throughput
experimental screening methods. In four of the nine test
cases, the rescoring method robustly improves enrichment,
relative to docking alone, well beyond the top 1% of the
ranked database. In the other test cases, however, the results
of the docking and rescoring methods are roughly comparable
beyond the top 1%. By carefully analyzing the results for

one test case (DHFR), we suggest some reasons for this
behavior, which reflects many factors in addition to the
quality of the scoring function.

We also present anecdotal but encouraging results assess-
ing the ability of the rescoring method to predict specificity
of inhibitors for structurally related proteins.

2. METHODS

Molecular Docking. We use the test set of McGovern
and Shoichet, containing nine therapeutically important
enzymes (Table 1). Briefly, each protein was prepared for
docking in the same manner as previously described.36 When
cofactors were present, they were treated as part of the pro-
tein. The molecular solvent-accessible surface37 was calcu-
lated with the program DMS38 using a probe radius of 1.4
Å. Polar hydrogens were added to the proteins using
SYBYL.39 Matching spheres, required for initial placement
of the ligand during database screening, were obtained from
the position of the crystallographic ligand using the program
SPHGEN.14 A “coloring” scheme40 was applied to individu-
ally label the matching spheres on the basis of their hydro-
gen-bond properties and the charge states of nearest neigh-
boring atoms in the protein binding site. Four different types
of grids were generated before the docking calculations, in-
cluding an excluded volume grid obtained from DISTMAP,41

a united AMBER-based van der Waals potential grid com-
puted by CHEMGRID,41 an electrostatic potential grid calcu-
lated using DelPhi,42 and a ligand desolvation grid computed
using SOLVMAP (B. K. Shoichet, unpublished results).

The program DOCK 3.5.54 was used to dock the MDL
Drug Data Report (MDDR) database into the protein binding
site.43,44DOCK 3.5.54 implements an alternative method of
whole-molecule-based docking14,15,45-47 to sample the ligand
conformational space, where ensembles of precalculated
conformers from conformationally expanded databases are
used to significantly speed up docking calculations.44 To
sample ligand orientations, the bin size for both receptor and
ligand was set to 0.4 Å and the overlap bin size was set to
0.3 Å. A distance tolerance (dislim) of 1.5 Å was applied
for matching the ligand to the spheres, and ligand orientations

Table 1. Measures of Enrichment of the Known Inhibitors for Nine Enzyme Systems Achieved by Docking Alone (D) and the Rescoring
Procedure (R)a

% of ranked
database

needed to find
25% of known

inhibitors

maximum
enrichment

factor achieved

% of ranked
database where

maximum
enrichment factor

occurred

number
of known

inhibitors found
in top 0.1% of

ranked database

number
of known

inhibitors found
in top 0.5% of

ranked database

enzyme
PDB
code

number
of known
inhibitors D R D R D R D R D R

DHFR 3dfr64 117 0.3 0.3 111 204 0.1 0.1 15 25 34 32
DHFR (mod) 3dfr64 100 0.3 0.1 110 239 0.1 0.1 13 25 31 32
GART 1c2t65 50 0.9 0.8 46 159 0.3 0.1 0 8 8 12
AR 1ah366 722 3.5 4.0 8 12 2.0 0.1 6 9 19 33
PARP 1efy67 45 4.6 2.3 6 11 5.2 3.8 0 0 0 2
PNP 1b8o68 25 1.2 0.1 60 358 0.2 0.1 1 9 3 11
SAHH 1a7a69 37 2.1 1.8 14 19 1.3 2.0 0 0 0 0
thrombin 1ba870 243 4.2 0.8 25 49 0.1 0.1 6 13 21 58
AChE 1e6671 554 5.0 5.1 21 25 0.4 0.1 5 13 59 30
TS 2bbq72 171 1.5 0.5 25 52 0.3 0.1 3 9 19 44

a Abbreviations: AR, aldose reductase; DHFR, dihydrofolate reductase; GART, glycinamide ribonucleotide transformylase; PARP, poly(ADP-
ribose) polymerase; PNP, purine nucleoside phosphorylase; SAHH,S-adenosylhomocysteine hydrolase; AChE, acetylcholinesterase; TS, thymidylate
synthase. DHFR (mod) refers to excluding 17 inhibitors with known problems (prodrugs, incorrect tautomerization, and parametrization failure),
as discussed in the text.
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were rejected if the color of a ligand-receptor pair did not
match. For each ligand orientation, the conformational
ensemble was filtered for steric complementarity using
DISTMAP with polar and nonpolar close contact limits of
2.3 and 2.6 Å, respectively. Ligand conformations are scored
on the basis of the docking total energy (Etot ) Eele + Evdw

- ∆Glig-solv), which is the sum of electrostatic (Eele) and van
der Waals (Evdw) interaction energies corrected by the ligand
partial desolvation energy (∆Glig-solv). This precalculated
atomic desolvation penalty was from AMSOL, as previously
described,48 and the partial desolvation penalty was based
on the fraction of surface area buried by the receptor for
each ligand atom (B. K. Shoichet, unpublished results). Final
energies were computed after 25 steps of rigid-body mini-
mization. Then, a single docking pose with the best total
energy score was saved for each docked molecule. For
ligands with multiple protonation states, only the best scoring
version was retained for further consideration.

Molecular Mechanics Rescoring.The top 25% of the
ranked database from the docking was submitted to our
rescoring protocol. As discussed in the Results, this threshold
was chosen because the docking algorithm typically ranked
most known binders within the top 25% of the database.

All energy minimizations were performed using the Protein
Local Optimization Program (PLOP)49-51 with the all-atom
OPLS force field (OPLS-AA)52,53 and the Surface General-
ized Born (SGB) implicit solvent model.54,55 PLOP imple-
ments a multiscale truncated-Newton (MSTN) minimization
algorithm. This algorithm is described in detail elsewhere;56

because it is critical to the success of this work, we briefly
summarize the results here. The algorithm is adapted from
TNPACK57 and optimized by applying multiscale methods,
analogous to those used in molecular dynamics (e.g.,
r-RESPA).58 The molecular mechanics forces are divided into
short- (bond, angle, torsion, and local nonbonded) and long-
range components, with the long-range forces updated only
intermittently (never during the inner TN cycles and infre-
quently during the outer cycles). The speedup of MSTN
relative to the unmodified TNPACK algorithm depends on
system size and the distance cutoffs used for defining the
short- and long-range interactions and the long-range force
updating frequency, but it is a factor of 4.0-4.5 faster with
the parameters used here. The algorithm is also optimized
for minimizations with generalized Born implicit solvents,

using a self-consistent procedure that increases the compu-
tational expense, relative to vacuum, by only a small factor
(∼3). The termination criterion for the minimization was
determined by the root-mean-squared gradient and the
maximum number of truncated Newton (TN) steps with
default values of 0.001 kcal/mol/Å and 65, respectively.
Cutoffs for the nonbonded interactions are residue-based and
depend on the type of side chain (charged or neutral). We
employ fixed absolute cutoffs (long-range cutoffs) of 30 Å
for charged-charged residue pairs, 20 Å for charged-neutral
pairs, and 15 Å for neutral-neutral pairs, with no smoothing.
The short-range cutoffs for charged-charged residue pairs
are 15 Å, and for all other pairs, they are 10 Å. The long-
range interactions are updated during every fifth outer cycle
of the TN minimization.

Each protein was prepared for ligand rescoring using the
same procedure. The same protein structure file used in the
docking was used for rescoring. When cofactors were
present, the program IMPACT59 was used to generate OPLS
force field parameters for it. Hydrogen atoms were added in
standard geometries as defined by the OPLS force field using
PLOP. The positions of hydrogen atoms on OH and SH
groups were determined as the lowest energy state by
scanning the hydrogen dihedral angles at 10° intervals using
the OPLS force field with GB solvation, followed by energy
minimization of all hydrogen atoms. The resulting protein
structure was used for generating ligand-protein complexes
for the rescoring step. Note that all heavy atoms were held
fixed during this receptor preparation procedure.

The rescoring procedure for a single protein-ligand
complex is shown in Scheme 1. The first step is to generate
OPLS force field parameters for each ligand using IM-
PACT,59 after which the coordinate and parameter files are
passed to PLOP. The protein-ligand complex and the free
ligand were then submitted to energy minimization in a GB
solvent. The binding energy (Ebind ) ERL - EL - ER ) was
calculated by subtracting the energies of the free ligand in
solution (EL) and the free protein in solution (ER) from the
ligand-protein complex’s energy in solution (ERL). In this
work, the protein was kept rigid during minimization of the
ligand-protein complex to reduce the computational ex-
pense. However, in other works, portions of the receptor are
allowed to relax during minimization, to account for receptor
strain (unpublished results).

Scheme 1.Refinement and Rescoring Protocola

a The superscript R refers to the free receptor in solution, L refers to the ligand in solution, and RL refers to the protein-ligand complex in
solution.Ebind is the predicted ligand binding energy, the free receptor energy in solution (ER) is a constant value,EL is the energy of the free ligand
in solution, andERL is the energy of the ligand-protein complex in solution.
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Enrichment Calculations. The MDDR database contain-
ing 95 579 unique molecules was used as a background of
drug-like decoys for enrichment calculations. We assume that
molecules annotated as inhibitors of a given enzyme in the
MDDR are true positives and the remaining molecules are
true negatives (neither of these assumptions is likely to be
entirely correct, as discussed below). The quality of enrich-
ment is measured as the proportion of true binders found in
selected subsets from the docking (or rescoring) calculations
compared with the proportion expected from random selec-
tion. The enrichment factor (EF) is calculated as EFsubset)
{binderssubset/Nsubset}/{binderstotal/Ntotal}.48

3. RESULTS

Early Enrichment Improved via Rescoring. The key
results are summarized in Figure 1 and Table 1. Two types
of graphs are presented in Figure 1.36,48 The left panel
presents the percent of known inhibitors found (y axis) as a
function of the percent of the ranked database (x axis). The
line y ) x, shown in gray, is the curve expected when
randomly selecting compounds; thus, the curves obtained
from the docking and rescoring should rise above this line
by an amount related to the enrichment of the known

inhibitors. The higher the percentage of known inhibitors
found at a given percentage of the ranked database, the better
the performance of the virtual screening. The right panel of
Figure 1 is the enrichment factor (y axis) as a function of
the percentage of the ranked database (x axis), which
emphasizes the enrichment of known binders in the top 5%
of the ranked database. High enrichment factors near the top
of the database (i.e., those compounds that would actually
be tested in a typical experimental screen) are desired.

Table 1 summarizes the results using five indicators: the
percent of the ranked database required to find 25% of the
known inhibitors, the maximum enrichment factor, the
location of the maximum enrichment factor, and the numbers
of known inhibitors found in the top 100 and 500 ranked
compounds. A key objective in database screening is to find
active compounds as early as possible in the ranked database.
In many typical screening efforts (excluding high-throughput
screening), only a few dozen to a few hundred compounds
from the top of the docking hit list are selected for
experimental screening. In Table 1, we report the number
of known inhibitors found in the top 100 and 500 ranked
compounds (∼0.1% and∼0.5% of the database, respec-
tively). Encouragingly, the rescoring procedure appears to

Figure 1. Enrichment plots for nine enzyme systems obtained after docking alone (blue line) and after rescoring (orange line). (Left) The
percent of known inhibitors identified in increasingly large subsets of the ranked database. The gray line represents the results expected
from a random selection of ligands. (Right) Enrichment factor as a function of the fraction of the ranked database. DHFR (mod) refers to
excluding 17 DHFR inhibitors with known problems (prodrugs, incorrect tautomerization, and parametrization failure), as discussed in the
text. This additional analysis, resulting from an extensive manual inspection of the results, was not performed for the other cases.
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robustly improve early enrichment, especially within the top
few tenths of a percent of the database, by several measures
(Figure 1 and Table 1).

As a case study, we carefully examine the results for
DHFR. Docking alone gives a maximum enrichment factor
of 111, occurring at the top 0.1% of the database, which
corresponds to 15 known inhibitors found in top 100
compounds in the ranked list. With the rescoring procedure,
the maximum enrichment factor (204) is nearly doubled, with
25 known inhibitors found in the top 0.1% of the database.
By contrast, the rescoring actually performs slightly worse
than docking alone beyond the top 0.3% of the database
(Figure 1a, left panel). At 0.5% of the database, 34 known
inhibitors are found by docking while only 32 inhibitors are
found by rescoring. The maximum difference along they
axis (8% of known inhibitors) between docking and rescoring
occurs at the top 3.8% of the database (Figure 1a, left panel),
which corresponds to the net loss of nine DHFR inhibitors
after rescoring. Five DHFR inhibitors (with docking ranks
ranging from 0.7% to 4%) were skipped in rescoring because
of a failure in the parametrization step; however, this cannot
explain the difference completely.

A similar scenario is observed in GART, where rescoring
triples the enrichment factor and lowers the percentage of
the database from 0.3% to 0.1% where the maximum
enrichment factor occurs. However, the rescoring starts to
perform worse than docking beyond the top 1% of the
database (Figure 1c, left panel). The maximum difference
along they axis (20% of known inhibitors) between docking
and rescoring occurs at the top 6% of the database,
corresponding to the net loss of 10 GART inhibitors by
rescoring. Clearly, rescoring improves early enrichment,
which we consider a significant benefit, but also penalizes
some known binders, further down the hit list, in these two
cases. AR arguably belongs in this category as well, with
significant improvements in enrichment up through the top
2% of the database and a similar to slightly worse enrichment
further down the list (Figure 1d, left panel).

To understand what causes these differences, the atomistic
interactions between representative known binders were
analyzed in detail. For instance, DHFR inhibitors1 and 2
(structures shown in Figure 2a) are ranked #1828 and #22
after the initial docking and #4 and #17 020 after rescoring,
respectively. The docking poses of both compounds super-
impose well with the crystallographic ligand methotrexate.
The refinement and rescoring procedure significantly im-
proves the relative rank of compound1 but dramatically
worsens the rank of compound2. The key hydrogen bonding
interactions between methotrexate and the DHFR binding
site residues are illustrated in Figure 2b. Minimization of
the ligand inside the protein binding pocket generates
relatively small conformational changes but clearly enhances
energetically important interactions such as the hydrogen
bond between the two charged carboxylate groups of
compound1 and the binding site residues Arg57 and His28
(Figure 2c). On the other hand, rescoring of compound2
magnifies the unfavorable interactions between the hydrogen-
bond acceptor atom O6 of compound2 and the backbone
oxygen atoms of protein residues Leu4 and Ala97 (Figure
2d), where chemical functional groups containing hydrogen-
bond donors (pteridines and pyrimidines) are generally
presented in known DHFR inhibitors. The problem here is

Figure 2. (a) Structures of two DHFR inhibitors, compound1 and
compound2, which ranked #1828 and #22 after docking versus
#4 and #17 020 after rescoring, respectively. (b) The crystal-
lographic ligand (methotrexate; structure shown in Figure 6a) is
represented by a CPK model colored by atom type. The key
hydrogen bond interactions between the protein and methotrexate
are illustrated with dashed green lines. (c) The docked pose of
compound1 is colored by atom type, while the refined binding
pose is in orange. Two hydrogen-bond interactions, identified by
dashed green lines, are recovered after minimizing the ligand during
the refinement stage. (d) The docked pose of compound2 is colored
by atom type, while the refined binding pose is in orange. The
unfavorable interactions between backbone oxygen atoms of protein
residue binding site residues and the O6 atom of compound2 are
illustrated with dashed red lines. Molecular images were generated
with VMD.73
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simply that the wrong tautomer state for compound2 was
presented in our study because of an incomplete treatment
of tautomerization in our ligand database preparation. In this
case, enolization of the O6 atom of compound2 would
restore the favorable interactions in the rescoring. In the
MDDR database, 10 DHFR inhibitors are derivatives of
compound2, and all of these are ranked reasonably highly
by the docking scoring function (within the top 3% of the
database) but poorly by rescoring (outside of the top 10%
of the database). Another set of six compounds were “de-
enriched” during rescoring because they are ester prodrugs
instead of free glutamate acid moieties.

It appears that the simple scoring function employed in
the docking method is less sensitive to such errors, while
the more physically reasonable molecular mechanics energy
employed in the rescoring requires accurate treatment of
protonation and charge states to correctly account for the
electrostatic properties of ligands. Improvements to the
database preparation procedure are being pursued. Simply
excluding the problematic DHFR ligands discussed above
improves the enrichments obtained upon rescoring, particu-
larly beyond the top 0.3% of the database (Figure 1b and
“DHFR (mod)” in Table 1).

In the cases of PARP, PNP, thrombin, and TS (Figure 1),
rescoring consistently performs better than docking alone.
In PNP, rescoring increases the maximum enrichment factor
6-fold over docking alone. One of the most potent PNP
inhibitors (compound4 in Figure 3a), currently in phase I
trials, ranks #1 after rescoring and #674 after docking alone.
Figure 3b presents the pose of this inhibitor overlapped with
the PNP cocrystallized ligand.

The remaining two test cases (SAHH and AChE) are more
complicated. The maximum enrichment factors for docking
and rescoring are similar and below 25. SAHH is the only
case where the earliest enrichment is worse after rescoring,
albeit not by a huge margin. Shown in Figure 4 is a known
SAHH inhibitor, which ranks #568 after docking alone and
#1705 after rescoring. Clearly, the pentose ring of compound
6 is rotated∼180 degrees from the orientation observed in

the cocrystallized ligand. We do not know the origin of this
error; possibilities include inadequate sampling of the pentose
ring conformations, poor parametrization of the cofactor, or
simply limitations of the scoring function used to select the
poses.

For AChE, the rescoring improves enrichment at the very
top of the database but performs significantly worse lower
down, even at 1%. We believe many of the ligands that rank
worse after rescoring may have incorrect binding poses
generated by docking, although we cannot exclude other
explanations. The AChE binding cavity is large, and
compounds can bind to several different regions within the
pocket, making it a particularly difficult test case.60

Correct Protonation States Are Critical for the Res-
coring. Unsurprisingly, incorrect protonation states on the
ligands, receptor, or cofactors significantly affect the elec-
trostatic potential, which in turn strongly affects the rescoring
calculations. In this work, we did not attempt any sophisti-
cated prediction of protonation states. Instead, we simply
inspected binding sites “by eye”. With respect to the protein,
we simply identified His residues that should be positively
charged as those that are within hydrogen-bonding distance
of a carboxylate group. With respect to cofactors, a phosphate
group is present in the PNP binding site and interacts with
ligands (shown in Figure 3). The assignment of different
protonation states to the phosphate group dramatically
changes the enrichments obtained from rescoring (Figure 5a);
however, it affects the enrichments obtained from docking
very little (Figure S1 in the Supporting Information).
Strikingly, the maximum enrichment factor after rescoring
increases by factors of 3 and 30 when the formal charge on
the phosphate group is changed from-3 to -2 and -1,
respectively. The correct protonation state of this phosphate
group is clearly-1 on the basis of physical principles. The
pKa value for HPO3

-2/H2PO3
- is ∼7, and desolvation of the

ion in the binding site will shift the pKa lower.
In DHFR, the enrichment of known inhibitors was

originally negatively impacted by incorrect formal charges

Figure 3. (a) Structures of the PNP cocrystallized ligand and
compound4, which ranked #674 after docking alone and #1 after
rescoring. (b) The docked pose of compound4 (blue) is superim-
posed over the minimized binding pose after the rescoring stage
(orange). The protein structure is represented as an aqua-colored
ribbon, while the cocrystallized ligand is shown in green. The
phosphate group cofactor is shown in gray.

Figure 4. (a) Structures of the SAHH cocrystallized ligand and
compound6, which ranked #568 after docking and #1705 after
rescoring. (b) The docked pose of compound6 is shown in blue,
while the refined binding pose is in orange. The newly formed
hydrogen bonds between the sugar moiety of compound6 and
cofactor NAD+, after minimization during the rescoring procedure,
are marked with yellow lines. The protein structure is represented
by aqua ribbon, while the crystallographic ligand is shown in green,
and the cofactor is colored by atom type.
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being assigned to many DHFR inhibitors (Figure 5b), such
as methotrexate (Figure 6). The program IMPACT failed to
recognize protonated methotrexate analogues and assigned
a formal charge of 0 to pteridine rings, which resulted in
the rescoring producing enrichment factors almost 3-fold
worse than docking alone (Figure 5b). However, when this
problem was corrected by assigning partial atomic charges
calculated using AMSOL48 before rescoring the database
compounds, the enrichment was significantly improved.

These results fully agree with previous work demonstrating
that improved modeling of protonation states leads to a better
prediction of binding affinities when implicit solvent models
are used.29 Clearly, the proper treatment of tautomeric forms
and protonation states on receptor binding residues and
ligands is a key requirement for taking advantage of the more
accurate electrostatics calculations carried out in the rescoring
method.

The Fraction of the Database Selected for Rescoring.
It is common in virtual screening to subject top-ranking
compounds identified by a docking algorithm to some type
of rescoring procedure (generally not a force-field-based
method as in this work). The fraction of the database
subjected to rescoring is generally arbitrary, ranging from
1% to 10% of the entire database.24 This parameter can affect
not only efficiency (i.e., rescoring more ligands takes a longer
time) but also, potentially, accuracy. That is, if few true
inhibitors are ranked below, for example, 10%, then rescoring
a larger portion of the database will do little to improve
enrichment and could even make it worse if some decoys
rank highly because of limitations of the energy function or
other technical problems.

Here, we address this issue systematically by performing
additional enrichment studies where different fractions (1%,
5%, 10%, 15%, 20%, and 25%) of the docked database were

selected for rescoring. The results are shown in Figure S2
in the Supporting Information. In the systems with relatively
poor enrichment (AR, AChE, PARP, and SAHH), the best
enrichment is given by rescoring a relatively small portion
of the ranked database, approximately the top 5%. For these
four cases, rescoring a great fraction of the database increases
the “noise” more than the “signal” and degrades the overall
enrichment. In the systems with moderate enrichment after
docking (thrombin, GART, and TS), enrichments are im-
proved maximally by rescoring∼15-25% of the database.
Finally, for DHFR and PNP, the enrichments are essentially
insensitive to the rescoring cutoff.

In general, the systems with the best overall enrichment
after docking alone show the least sensitivity to the fraction
of the database chosen for rescoring. This arguably makes
sense, because the rescoring procedure relies on the docking
algorithm to generate accurate poses (inaccurate poses can
be due either to inadequate sampling or scoring by the
docking algorithm or to induced fit effects that are not
accounted for with a rigid receptor). The systems with the
best enrichment presumably reflect a higher fraction of
ligands being docking with accurate poses, and we postulate
that these ligands are generally enriched further upon
rescoring. Generally, 5% of docked database seems to be
the lower limit for rescoring, while 25% is the upper limit.

Better Selectivity Profiles Achieved by Rescoring.
Selectivity is a major challenge in drug discovery efforts that
target proteins in families with many members possessing
close structural similarity. Here, we provide a preliminary
and admittedly anecdotal assessment of the ability of the
rescoring protocol to improve selectivity.

The substrates of DHFR, GART, and TS enzymes are
folate-related compounds. Generally, their inhibitors are
chemically similar (the cocrystallized ligands are shown in

Figure 5. (a) Enrichment plots for PNP obtained from docking (blue line) and rescoring with different charge states assigned to the
cofactor phosphate group: H2PO3

- (orange line), H1PO3
2- (green line), and PO33- (black line). (b) DHFR enrichment results obtained from

docking (blue line) and rescoring with incorrectly parametrized ligands (green line) and correctly parametrized ligands (orange line). The
incorrectly parametrized ligands have a formal charge of 0 on the pteridine ring.
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Figure 6a), and there exists evidence that the DHFR inhibitor
methotrexate inhibits GART and TS.61 In the MDDR
database, 16 compounds are annotated as inhibitors of all
three enzymes (DHFR, GART and TS), while another set
of nine compounds are annotated as GART and TS inhibitors.
The docking results for DHFR show that GART inhibitors
are actually enriched more significantly than the ligands
annotated as DHFR inhibitors (Figure 6; a similar result is
seen for TS). Encouragingly, the results after rescoring
correct this situation. That is, the earliest enrichment (0.1%
of the database) shows a strong preference of DHFR for the
inhibitors annotated as DHFR selective and less preference
for the ligands annotated as TS and GART inhibitors. Similar
results are seen for rescoring against TS and GART. These
results suggest that our rescoring method is able to discrimi-
nate not only between actives and inactives but also between
closely related analogues, at least in this case.

4. DISCUSSION AND CONCLUSION

We have developed a two-stage virtual screening protocol,
in which a rapid-to-compute, grid-based scoring function
(implemented in DOCK 3.5.54) is used to dock large
compound databases to a receptor, and a more computation-

ally intensive molecular-mechanics-based energy function is
used to rescore single poses for the top 25% of the ligands
from the docking phase. The rescoring procedure uses the
OPLS all-atom force field and a generalized Born implicit
solvent model and accounts for ligand/receptor desolvation
and, to a lesser extent, ligand strain energies in a more
physically realistic manner than the docking algorithm (vide
infra). The overall computational expense of the rescoring
protocol is relatively modest, about 1 min per ligand on
recent-generation personal computers, and thus can be
applied to the large compound databases commonly em-
ployed for docking applications. One critical technical
advance making this work possible is the multiscale truncated
Newton minimization algorithm for rapidly relaxing the
ligands in the protein receptor (with implicit solvation), as
described in the Methods.

We evaluated the success of the new rescoring procedure
by the extent to which known inhibitors were enriched
against a background of drug-like decoys. Encouragingly,
for all nine cases, the maximum enrichment factor increased
upon rescoring, by up to a factor of 6. After rescoring, the
maximum enrichment factor occurred early in the ranked
database, around∼0.1% (top 100 compounds) for seven out

Figure 6. (a) Structures of the crystallographic ligands of DHFR, GART, and TS. (b) Enrichment against three folate enzyme systems:
DHFR, GART, and TS. The enrichment of ligands annotated as DHFR inhibitors is shown in red, the enrichment of GART inhibitors is
in green, and the enrichment of TS inhibitors is in blue. Results after docking alone are shown on the left, and those after rescoring are
shown on the right.
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of nine cases. Enrichment factors beyond the top 1% of the
database were generally not affected substantially by res-
coring and, in a few cases, were worse than docking alone.
Our detailed evaluation of the results for DHFR suggested
several reasons for this, including many artifacts unrelated
to the scoring function. As discussed below, we believe that
the two most significant limitations of the rescoring method
in its current form are related to incorrect poses generated
by the docking algorithm and the rigid receptor approxima-
tion applied in this work.

Although we do not have sufficient data to make a firm
conclusion, the rescoring method appears to work best on
cases where the docking alone generates good enrichment.
For five of the nine test cases, the docking algorithm
generated maximum enrichment factors of 25 or greater; in
all five of these cases, the rescoring at least doubles the
maximum enrichment factor, with the largest improvement
for PNP (6-fold). Finally, results on three folate enzymes
suggest that our post-docking rescoring process may help to
predict the selectivity of ligands toward related proteins,
although we acknowledge that these results are anecdotal.

Table 2, which summarizes the differences between the
sampling and scoring functions used in the docking and
rescoring stages, helps both to rationalize the success of the
rescoring at improving enrichment and to point the way to
further improvements. The major physical effect treated by
the rescoring but not by the docking scoring function is
desolvation. DOCK 3.5.54 includes a partial treatment of
ligand desolvation but currently does not treat receptor
desolvation.42,48,62 A complete treatment of ligand and
receptor desolvation, even at the implicit solvent level, is
incompatible with the grid-based scoring required for the
rapid screening of many ligand poses. The rescoring method
includes a full implicit solvent treatment of ligand and
receptor desolvation. The use of an all-atom force field, as
opposed to the united atom force field used in DOCK, also
undoubtedly improves the treatment of hydrogen bond and
other nonbonded interactions.

Nonetheless, the fully flexible minimization of the ligand
in the receptor is critical to the success of the rescoring;
results without this minimization show very poor enrichment
(results not shown). In other works, energy minimization of
docking poses was shown to significantly improve the
enrichments in systems with sterically demanding binding
pockets.24 Clearly, the minimization performed by the
rescoring method cannot rescue grossly misdocked ligands
(e.g., Figure 4). However, in the cases of docking poses close

to the native states (Figure 3), energy minimization is capable
of locally refining the binding geometries, and the minimized
energy is effective at improving enrichment.

In Table 2, we also compare the docking and rescoring
methods with free energy methods, by which we refer to
more rigorous methods of computing free energies, such as
FEP, TI, mining minima, and OWFEG, as well as MM-PB/
SA and MM-GB/SA, which involve some simplifying
approximations.30-34 We view our rescoring method as an
intermediary between high-throughput docking methods and
more rigorous molecular-mechanics-based methods. It uses
the same all-atom force fields typically applied in more
rigorous free energy methods but uses a generalized Born
implicit solvent and limits sampling to simple minimization
(beyond the extensive ligand sampling provided by the
docking algorithm). Our rescoring approach is also inter-
mediate between high-throughput docking and free-energy
methods in terms of computational expense. It is orders of
magnitude slower than the docking algorithm but orders of
magnitude faster than more rigorous free energy estimates.
Ultimately, we can envision following up the physics-based
rescoring with even more computationally intensive (but
presumably more accurate) methods for a subset of ligands.

The minimization of a ligand in a rigid protein receptor
requires only∼15 s, in implicit solvent. However, PLOP
takes∼45 s to load a protein-ligand complex, so that the
overall computational expense is∼1 min per complex. A
more efficient rescoring procedure may be developed simply
by optimizing the data-loading algorithm. In addition, there
are several ways to further improve our rescoring protocol
without greatly increasing the computational expense.

1. More Robust and Automated Treatment of Ligand and
Receptor Protonation States.We have shown several ex-
amples where the successful application of the rescoring
method requires an accurate assignment of protonation states.
In this work, we relied on visual inspection for assigning
protonation states to the protein, while ligand protonation
states were assigned during the automated ligand library
preparation. Both of these processes can be made more
robust. With respect to the proteins, we cannot rule out the
possibility that some protonation states remain incorrectly
assigned, and we are testing automated methods for assigning
protonation states. With respect to the ligands, tautomeriza-
tion was incompletely addressed in the library preparation
in this work; in addition, the automated parameter assignment
failed for a small fraction of the ligands. Fixes for these
technical problems are being pursued.

Table 2. Comparison of Various Characteristics of the Scoring Methods Used in Docking Alone (with DOCK 3.5.54), Molecular Mechanics
Rescoring as Described Here, and More Rigorous Methods for Estimating Relative or Absolute Binding Affinities

docking rescoring free energy methods

force field united atom all-atom all-atom
nonbonded interaction energy grid-based potential pairwise potential pairwise potential
ligand strain N/Aa partial treatment, with flexible

ligand minimization
treated via MD or MC

receptor strain N/Aa none in this work (can be included
by minimization)

treated via MD or MC

ligand desolvation partial atomic desolvation energy implicit solvent implicit or explicit solvent
receptor desolvation N/Aa implicit solvent implicit or explicit solvent
computational timing one second per ligand for sampling

millions of docking poses
one minute per ligand for minimizing

one docking pose
days per ligand

a N/A ) not applicable.
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2. ImproVing the Quality of the Molecular Mechanics
Energy Function.The 2003 version of the OPLS-AA force
field greatly improves the parametrization of ligands, espe-
cially for torsional parameters. We are also testing a
polarizable version of the OPLS force field and Poisson-
Boltzmann implicit solvent in our rescoring scheme.

3. Rescoring Multiple Poses.One major limitation of the
current protocol is that it relies entirely on the docking
algorithm to identify the correct binding pose. However, the
better treatment of desolvation applied at the rescoring stage
can, in principle, also help to identify correct poses, as has
been shown in other work.29,63 A simple extension of the
current method is to subject a small number of dissimilar
binding poses to minimization in the rescoring step and use
the most favorable binding energy for rank-ordering ligands.

4. Incorporating Receptor Flexibility.Small amounts of
receptor flexibility can be included in the current scheme
simply by minimizing the receptor along with the ligand
during the rescoring stage. In early tests of this procedure,
receptor minimization increases the computational expense
by only a small factor (<2), if only the residues contacting
the ligands are minimized.

Finally, we have not yet tested the ability of the rescoring
method to predict the relative binding affinities of inhibitors.
In principle, the improved enrichment shown here, relative
to a high-throughput docking program, reflects the improved
estimation of relative binding affinities, at least for a subset
of the known inhibitors. Nonetheless, it is clear that binding
affinity estimation is a much more challenging goal.
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