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SIRT6 Promotes DNA Repair Under
Stress by Activating PARP1
Zhiyong Mao, Christopher Hine, Xiao Tian, Michael Van Meter, Matthew Au, Amita Vaidya,
Andrei Seluanov,* Vera Gorbunova*

Sirtuin 6 (SIRT6) is a mammalian homolog of the yeast Sir2 deacetylase. Mice deficient for
SIRT6 exhibit genome instability. Here, we show that in mammalian cells subjected to oxidative
stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and stimulates DSB repair,
through both nonhomologous end joining and homologous recombination. Our results indicate
that SIRT6 physically associates with poly[adenosine diphosphate (ADP)–ribose] polymerase 1
(PARP1) and mono-ADP-ribosylates PARP1 on lysine residue 521, thereby stimulating PARP1
poly-ADP-ribosylase activity and enhancing DSB repair under oxidative stress.

Mammalian sirtuin (SIRT) proteins func-
tion in multiple pathways, including
stress response and genome mainte-

nance (1–3). SIRT1- and SIRT6-deficient cells
have a reduced ability to repair double-strand
breaks (DSBs) (4, 5), and SIRT6 knockout mice
exhibit a premature aging phenotype associated
with impaired base excision repair (BER) (6).
Furthermore, SIRT6 participates in homologous
recombination (HR) by deacetylating C-terminal
binding protein (CtBP) interacting protein (CtIP)
(7). Repair of DNA DSBs is essential for lon-

gevity, andmutations in DSB repair genes lead to
premature aging phenotypes (8). Due to the in-
volvement of sirtuins in stress response andDNA
repair, we hypothesized that members of the Sir2
family may promote longevity by integrating
stress signaling and DNADSBs repair pathways.

To examine the ability of SIRT proteins to
promote DSB repair under stress, we used two
diploid human fibroblast cell lines containing chro-
mosomally integrated green fluorescent protein–
based reporter constructs (9), which allow for the
separate analysis of HR and nonhomologous end
joining (NHEJ) (fig. S1). We overexpressed the
four nuclear-localized human sirtuins (SIRT1,
SIRT2, SIRT6, or SIRT7) in the reporter cell lines
(Fig. 1A) and measured the efficiency of DSB
repair. Overexpression of SIRT1 and SIRT2 had
no effect on DSB repair, whereas overexpression
of SIRT6 improved the efficiency of NHEJ by
3.3-fold and HR by 3.4-fold (Fig. 1B). SIRT7
overexpression increased the efficiency of NHEJ
by 1.5-fold and HR by 2.8-fold (Fig. 1B). We pre-
treated the cells with paraquat before induction
of DSBs to test the effect of oxidative stress in the
DNA repair assay. Only SIRT6 overexpression
under stress led to a significant stimulation of
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Fig. 1. SIRT6 stimulates DSB repair. (A) Over-
expression of SIRT1, -2, -6, and -7 in human fi-
broblasts. Immunoblotting with sirtuin-specific
antibodies after transfection with a sirtuin-expressing
vector or a control vector encoding hypoxanthine-
guanine phosphoribosyltransferase (pControl). (B)
Effect of sirtuin overexpression on the efficiency of
NHEJ and HR, measured as described in (27) and
fig. S1. The efficiency of DSB repair was scored in
untreated cells (open bars), cells pretreated with
1 mM paraquat for 16 hours (black bars), or cells
treated with paraquat and 5 mM nicotinamide for
16 hours (red bars). Error bars indicate SD; n = 8
experiments (control and SIRT6); n=3 (other sirtuins).
P values were calculated by two-tailed Student’s
t test. GFP, green fluorescent protein. (C) SIRT6
overexpression accelerates the disappearance of
gH2AX foci after treatment with 1 mM paraquat for
16 hours. Data represents an average of at least 50
nuclei. Error bars indicate SEM. (D) Immunoblot
showing induction of endogenous SIRT6 protein
levels by oxidative stress. Human fibroblasts were
treated with paraquat for 16 hours.
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NHEJ by 6.7-fold and HR by 6-fold relative to
control paraquat-treated cells or 16-fold relative
to untreated controls (Fig. 1B). Addition of a
sirtuin inhibitor, nicotinamide, which inhibits both
deacetylase and mono–adenosine diphosphate
(ADP)–ribosylase activities, abolished the stim-
ulatory effect of SIRT6 overexpression (Fig. 1B).
We also observed stimulation of DSB repair by
SIRT6when a different inducer of oxidative stress,
H2O2 was used (fig. S2). Furthermore, overexpres-
sion of SIRT6 accelerated clearance of gH2AX
foci in paraquat treated cells (Fig. 1C) and ac-
celerated repair of DSBs induced by neocarzino-
statin, measured by a neutral comet assay (fig. S3).
Additional experiments demonstrating the stim-
ulatory effect of SIRT6 on DSB repair are shown
in fig. S4. Oxidative stress elevated endogenous
SIRT6 levels (Fig. 1D), indicating that ectopic
overexpression enhances this physiological re-
sponse. We also showed that depletion of SIRT6
compromises DSB repair, especially under stress

(fig. S5). Together, these observations suggest
that SIRT6 plays an important regulatory role in
the DNA damage response by stimulating DSB
repair under oxidative stress.

SIRT6 is a chromatin-associated protein (6, 10)
that binds to sites of DNA DSBs (5). SIRT6 dis-
tribution in untreated cells showed distinct ag-
gregates within the nucleus that colocalized with
heterochromatin proteinHP1b (fig. S6). Next, we
used chromatin immunoprecipitation (ChIP) to
analyze SIRT6 recruitment to damaged DNA
after oxidative stress. SIRT6 was recruited to Alu
elements after g-irradiation (Fig. 2A) and to the
site-specific DSB generated by I-SceI (Fig. 2B
and fig. S7). In the absence of oxidative stress,
SIRT6 was recruited after 8 and 10 hours of
g-irradiation and I-SceI transfection, respectively.
When the cells were pretreated with paraquat, we
observed an additional, early wave of SIRT6 re-
cruitment, within 30 min after induction of DSBs.
Thus, under normal conditions SIRT6 is recruited

to DSBs relatively late, whereas preexisting oxi-
dative stress results in early mobilization of SIRT6.

Sir2 family members have two enzymatic activ-
ities, deacetylase andmono-ADP-ribosyltransferase
(11–13). To determine which enzymatic activity
is important for the stimulation of DSB repair, we
introduced point mutations in conserved residues
of SIRT6: Ser56→Tyr56 (S56Y) (14) lacks both de-
acetylase andmono-ADP-ribosyltransferase activ-
ities, G60A lacks mono-ADP-ribosyltransferase
activity, and R65A lacks deacetylase activity (Fig.
3, A and B). All three mutations reduced the abil-
ity of SIRT6 to stimulate DSB repair, suggesting
that both activities are important for this function
(Fig. 3C).

To identify the substrate of SIRT6 mono-
ADP-ribosylation, we introduced biotin-labeled
nicotinamide adenine dinucleotide (NAD), a sub-
strate formono-ADP-ribosyltransferase, intowild-
type (WT) and SIRT6−/−mouse embryo fibroblasts
(MEFs), which were pretreated with paraquat.
Poly-ADP-ribosylated proteins were depleted
from the cell extracts using poly-ADP-ribose anti-
bodies. The remaining mono-ADP-ribosylated
proteins were isolated using avidin-coated beads.
We observed two bands corresponding to pro-
teins of approximately 120 and 70 kD (Fig. 4A).
The 120-kD band was present at higher levels in
theWT than in the SIRT6−/− cells, suggesting that
ribosylation of this protein is mediated by SIRT6.
The level of the 70-kD band was independent of
the SIRT6 status. We focused on the 120-kD pro-
tein hypothesizing that the band corresponded to
poly(ADP-ribose) polymerase 1 (PARP1). This
was confirmed byWestern blotting with PARP1
antibodies (Fig. 4B). Coimmunoprecipitation
showed that SIRT6 physically associates with
PARP1, and the interaction between SIRT6 and
PARP1 was resistant to the addition of ethidium
bromide (Fig. 4C), indicating that the two pro-
teins interact directly rather than through binding
to DNA. Themolecular weight of PARP1 immuno-
precipitated with SIRT6 is higher than of the input
PARP1, suggesting that PARP1 bound by SIRT6
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wasmono-ADP-ribosylated (Fig. 4C). The amount
of SIRT6-PARP1 complexes increased after DNA
damage (fig. S8).

We introduced mutations into the six known
PARP1 ribosylation sites (15, 16)—D387A,E488A,
E491A, K498A, K521A, and K524A—and used
PARP1 knockout mouse fibroblasts containing in-
tegrated NHEJ reporter to test whether these mu-
tants can mediate the effect of SIRT6 on repair.
SIRT6 overexpression did not stimulate NHEJ
in PARP1 knockout cells (Fig. 4D). However,
when SIRT6 was cotransfected with the WT
PARP1, but not with catalytically inactive PARP1
Y889C, it led to stimulation of NHEJ, indicating
that PARP1 is required to mediate the effect of
SIRT6 on repair. The PARP1K521Amutant was
sufficient to abolish the stimulation of repair by
SIRT6, whereas the mutations in the other five

ribosylation sites had no effect, either alone or in
combination (Fig. 4D), indicating that SIRT6
ribosylates PARP1 on K521. This was confirmed
by showing that purified PARP1wasmono-ADP-
ribosylated by SIRT6, whereas K521A mutant
was not (Fig. 4E). Neither was K521A modified
by SIRT6 in vivo (fig. S9).

PARP1 binds to DNA damage sites and ac-
tivates itself by automodification. It also poly-
ADP-ribosylates other proteins around DNA
damage sites facilitating recruitment of DNA re-
pair factors (17–19). To test whether PARP1 ac-
tivation is enhanced by mono-ADP-ribosylation
by SIRT6, we analyzed PARP1 activity in vitro
in the presence of SIRT6.WT SIRT6 protein and
the R65A mutant, which has only mono-ADP-
ribosylation activity, strongly stimulated PARP1
(Fig. 4F). The SIRT6 G60A mutant, which has

only deacetylation activity, failed to stimulate
PARP1, whereas the enzymatically inactive S56Y
mutant was inhibitory (Fig. 4F). We did not de-
tect changes in PARP1 acetylation status after in-
cubation with SIRT6 (fig. S10). To test the effect
of SIRT6 on PARP1 activity in vivo, we trans-
fected human fibroblasts with the WT SIRT6 and
SIRT6mutants. WT SIRT6 and the R65Amutant
enhanced PARP1 poly-ADP-ribosylation, where-
as S56Y and G60A mutants failed to stimulate
PARP1 (fig. S11). Furthermore, PARP1 inhibitors
3-ABA and PJ34 suppressed SIRT6-mediated
activation of NHEJ and HR (Fig. 4G). From this
result, we conclude that SIRT6 promotes DSB
repair by stimulating PARP1.

Multiple lines of evidence (20, 21) support the
role of PARP1 in DSB repair and in suppress-
ing aberrant recombination events by stabilizing
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brokenDNA ends (22, 23). Furthermore, PARP1
is required for an alternative, DNA–dependent
protein kinase catalytic subunit (PKcs) indepen-
dent pathway of NHEJ (24, 25). Overexpression
of SIRT6 in DNA-PKcs null MEFs up-regulated
NHEJ by 1.7-fold, and in theWTMEFs by 2.3-fold
(fig. S12), suggesting that SIRT6 stimulates the
alternative NHEJ pathway.

In this study, we identify PARP1 as the in vivo
target of SIRT6 ribosylation. As PARP1 is in-
volved in both BER and DSB repair (17, 26),
the role of SIRT6 as an activator of PARP1 ex-
plains the phenotype of the SIRT6 knockout
mice, which are characterized by deficient BER
and genomic instability probably stemming from
a defect in DSB repair (6). In the absence of
oxidative stress, SIRT6 overexpression mildly in-
duced repair, whereas under stress DNA repair
was stimulated up to 16-fold. This observation
suggests that SIRT6 plays a regulatory function
in DNA repair by integrating DNA repair and
stress signaling pathways.
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The Visual Impact of Gossip
Eric Anderson,1* Erika H. Siegel,1* Eliza Bliss-Moreau,2 Lisa Feldman Barrett1,3†

Gossip is a form of affective information about who is friend and who is foe. We show that
gossip does not influence only how a face is evaluated—it affects whether a face is seen in the
first place. In two experiments, neutral faces were paired with negative, positive, or neutral
gossip and were then presented alone in a binocular rivalry paradigm (faces were presented to
one eye, houses to the other). In both studies, faces previously paired with negative (but not
positive or neutral) gossip dominated longer in visual consciousness. These findings demonstrate
that gossip, as a potent form of social affective learning, can influence vision in a completely
top-down manner, independent of the basic structural features of a face.

Gossip is a vital thread in human social
interaction. As a type of instructed learn-
ing, gossip is a way to learn socially

relevant information about other people’s char-
acter or personality without having to experience
directly their triumphs and misadventures (1).
Whether delicious or destructive, gossip is func-
tional. It provides human beingswith information
about others in the absence of direct experience,
allowing us to live in very large groups. It is be-
lieved that gossip was important for social co-
hesion during the course of human evolution (2).
Scientists speculate that instead of establishing

and maintaining relationships by plucking fleas
off of each other, we exchange and digest juicy
tidbits of chit-chat, hearsay, and rumor. Gossip
allows human beings not only to transcend one-
to-one interaction for getting along and getting
ahead, but also to know the “value” of people we

have never met. For instance, perceivers evaluate
a structurally neutral face (presented alone) as
“negative” for as long as 2 days after that face
was paired only four times with a sentence de-
scribing a negative behavior (e.g., “threw a chair
at a classmate”) (3). Gossip, when understood as
a type of instructed affective learning, is a pow-
erful way to learn whom to befriend and, even
more important, whom to avoid—all without the
costly and time-consuming process of learning
from firsthand experience.

To assess how gossip might influence con-
scious visual experience for other people, we
capitalized on a phenomenon known as binocu-
lar rivalry (4). Binocular rivalry occurs when
perceptually dissimilar images are presented to
different eyes (e.g., a face to one eye and a house
to the other eye) and the two percepts compete
for perceptual dominance. Visual input from one
eye is consciously experienced (and seen) while
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Fig. 1. Example of gossip stimuli. Examples of structurally neutral faces paired with one of the following:
(A) negative gossip; (B) positive gossip; (C) neutral gossip; (D) negative nonsocial information; (E) positive
nonsocial information; (F) neutral nonsocial information. For a complete list of sentences, see (26).
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