**MOLECULAR PHARMACOLOGY, 25:1-9 The Kinetics of Competitive Radioligand Binding Predicted by the Law of Mass Action
Mass Action
Mass Action**

HARVEY J. MOTULSKY¹ AND LAWRENCE C. MAHAN²
HARVEY J. MOTULSKY¹ AND LAWRENCE C. MAHAN²
1*H* Department of Medicine University of California. San Die RVEY J. MOTULSKY¹ AND LAWRENCE C. MAHAN²
Department of Medicine, University of California, San
Received June 30, 1983; Accepted August 31, 1983

Division of Pharmacology, M-013 H, Department of Medicine, University of California, San Diego, La Jolla, California 92093

SUMMARY

Although equilibrium competitive radioligand binding studies are often used to characterize hormone and neurotransmitter receptors, the kinetics of such experiments have SUMMARY
SUMMARY
Although equilibrium competitive radioligand binding studies are often used to characterize hormone and neurotransmitter receptors, the kinetics of such experiments have
not been extensively explored. The i SUMMARY

SUMMARY

Although equilibrium competitive radioligand binding studies are often used to characterize hormone and neurotransmitter receptors, the kinetics of such experiments have

not been extensively explored. Th SUMMARY
Although equilibrium competitive radioligand binding studies are often used to charac-
terize hormone and neurotransmitter receptors, the kinetics of such experiments have
not been extensively explored. The interac equation and neurotransmitter receptors, the kinetics of such about doct to sinclude their terize hormone and neurotransmitter receptors, the kinetics of such experiments have not been extensively explored. The interaction Find the extensively explored. The interactions of the radioligand and competitor with the receptors can be described by two differential equations which can be solved to yield a single equation describing the binding of t the receptors can be described by two differential equations which can be solved to yield
a single equation describing the binding of the radioligand as a function of time. This
equation has several applications: First, it a single equation describing the binding of the radioligand as a function of time. The equation has several applications: First, it can be used to simulate competitive bindir reactions under defined conditions. Second, fi equation has several applications: First, it can be used to simulate competitive binding reactions under defined conditions. Second, fitting experimental data to this equation allows one to determine the association and d before equilibrium is reached. Third, mathematical analysis of the binding equation
allows one to determine the association and dissociation rate constants of the competing
ligand, parameters that cannot be derived from e Fractional and the association and dissociation rate constants of the competitigand, parameters that cannot be derived from equlibrium experiments. Furthermothis method can be used to determine the K_l of the competing d ligand, parameters that cannot be derived from equilibrium experiments. Furthermore, this method can be used to determine the K_I of the competing drug from data acquired before equilibrium is reached. Third, mathematica over time. The answers to these questions depended, to a large extent, which can be defined us to answer two specific questions regarding the kinetics of competitive radioli-
gand binding: how long such an incubation take before equilibrium is reached. Third, mathematical analysis of the binding equation
allowed us to answer two specific questions regarding the kinetics of competitive radioli-
gand binding: how long such an incubation take gand binding: how long such an incubation takes to equilibrate, and how the IC_{50} varies over time. The answers to these questions depended, to a large extent, on the relative values of the dissociation rate constants o gand binding: how long such an incubation takes to equilibrate, and how the IC₅₀ varies
over time. The answers to these questions depended, to a large extent, on the relative
values of the dissociation rate constants of values of the dissociation rate constants of the radioligand and competitor, which can be determined as noted above. When the competitor dissociates from the receptors more rapidly than the radioligand, the IC₅₀ first d determined as noted above. When the competitor dissociates from the receptors morapidly than the radioligand, the IC_{50} first decreases and then increases, but never ha value less than the K_I . At low radioligand conce rapidly than the radioligand, the IC_{50} first decreases and then increases, but never has a value less than the K_I . At low radioligand concentrations, equilibrium is reached in the same amount of time required of the value less than the K_I . At low radioligand concentrations, equilibrium is reached in the same amount of time required of the radioligand to dissociate completely from the receptors as determined in an "off-rate experime than does the radioligand, then the time required to equilibrate depends only on the
dissociation rate constant of the competitor, and the IC_{50} decreases over time.

INTRODUCTION

Competitive binding experiments, in wh

INTRODUCTION

INTRODUCTION

Competitive binding experiments, in which a radiola-

beled ligand competes with an unlabeled drug for binding

to a receptor site, are widely used to characterize hor-INTRODUCTION
Competitive binding experiments, in which a radiola-
beled ligand competes with an unlabeled drug for binding
to a receptor site, are widely used to characterize hor-
mone and neurotransmitter receptors. Usual INTRODUCTION
Competitive binding experiments, in which a radiola
beled ligand competes with an unlabeled drug for bindin
to a receptor site, are widely used to characterize hor
mone and neurotransmitter receptors. Usually Competitive binding experiments, in which a radiol
beled ligand competes with an unlabeled drug for bindit
to a receptor site, are widely used to characterize ho
mone and neurotransmitter receptors. Usually the inc
bation beled igand competes with an dihabeted drug for binding
to a receptor site, are widely used to characterize hor-
mone and neurotransmitter receptors. Usually the incu-
bation is allowed to reach equilibrium³ before the e binding experiment are well described, as are various mone and neurotransmitter receptors. Usually the incubation is allowed to reach equilibrium³ before the experiment is terminated and the radioligand binding is determ methods for the experiment is allowed to reach equilibrium³ before the experiment is terminated and the radioligand binding is determined. The properties of these equilibrium competitive binding experiments are well desc situations internated and the radioligand binding is deter-
mined. The properties of these equilibrium competitive
binding experiments are well described, as are various
methods for their analysis (1). In some experimental binding experiments are well described, as are various

11 methods for their analysis (1). In some experimental

situations it is necessary or useful to examine competitive

² Recipient of a New Investigator Award from t

¹ Recipient of a New Investigator Award from the National Institutes
of Health.
² Recipient of a predoctoral National Institutes of Health Training
Grant in hypertension.
³ Strictly speaking, equilibrium in never "re

of Health.

² Recipient of a predoctoral National Institutes of Health Training

Grant in hypertension.

³ Strictly speaking, equilibrium in never "reached"; rather it is

asymptotically approached. In a practical sens asymptotically approached. In a practical sense, however, equilibrium is reached once the binding deviates from its ultimate equilibrium value by an unmeasurable and trivial amount. After five half-lives, this deviation is

binding experiments before equilibrium is reached, but, although the kinetics of competitive binding have been partially described $(2-4)$, several questions remain. Using binding experiments before equilibrium is reached, but,
although the kinetics of competitive binding have been
partially described (2-4), several questions remain. Using
a mathematial expression describing the kinetics of binding experiments before equilibrium is reached, but, although the kinetics of competitive binding have been partially described (2–4), several questions remain. Using a mathematial expression describing the kinetics of binding experiments before equinorium is reached, but,

although the kinetics of competitive binding have been

partially described (2–4), several questions remain. Using

a mathematial expression describing the kinetics partially described (2–4), several questions remain. Using
a mathematial expression describing the kinetics of ra-
dioligand binding in the presence of a competing ligand,
we addressed the following theoretical questions: dioligand binding in the presence of a competing ligand, we addressed the following theoretical questions: How long does a competitive binding experiment take to reach equilibrium? How does a competitive binding curve chan dioligand binding in the presence of a competing ligand,
we addressed the following theoretical questions: How
long does a competitive binding experiment take to reach
equilibrium? How does a competitive binding curve
chan we addressed the following theoretical questions. Trow

long does a competitive binding experiment take to reach

equilibrium? How does a competitive binding curve

change over time? How can the dissociation constant of

a a receptor for a
non-equilibrium
THE MODEL

 $\mathbf{1}$

In this paper we consider only a very simple and widely

used model in which the radioligand and competing drugs

each bind reversibly to the receptors with specified ki-

netic constants and according to the law of mass a THE MODEL
In this paper we consider only a very simple and widely
used model in which the radioligand and competing drugs
each bind reversibly to the receptors with specified ki-
netic constants and according to the law of In this paper we consider only a very simple and widely
used model in which the radioligand and competing drugs
each bind reversibly to the receptors with specified ki-
netic constants and according to the law of mass act

aspet

MOTULSKY AND MAHAN
using the following symbols⁴: R = receptor, L = radio
gand, I = competing drug (or inhibitor); RL = recept 2 MOTULSKY AND MAHAN
using the following symbols⁴: R = receptor, L = rad
gand, I = competing drug (or inhibitor); RL = recept
radioligand complex, RI = receptor-competing drug c 2 MOTULSKY AND MAHAN
using the following symbols⁴: R = receptor, L = radiol:
gand, I = competing drug (or inhibitor); RL = receptor
radioligand complex, RI = receptor-competing drug com
plex: plex:

$$
R + L \underset{k_2}{\overset{k_1}{\rightleftharpoons}} RL
$$

$$
R + I \underset{k_4}{\overset{k_3}{\rightleftharpoons}} RI
$$

 $R + I \underset{k_4}{\rightleftharpoons} RI$
Here k_1 and k_3 are the forward-, association-, or on-rate
constants for the respective binding of radioligand and
competitor to the receptors (in units of min⁻¹ M⁻¹), and $R + I \rightleftharpoons RI$
Here k_1 and k_3 are the forward-, association-, or on-rate
constants for the respective binding of radioligand and
competitor to the receptors (in units of min⁻¹ M⁻¹), and P
 k_2 and k_4 are the r Here k_1 and k_3 are the forward-, association-, or on-rate constants for the respective binding of radioligand and competitor to the receptors (in units of min⁻¹ M⁻¹), and k_2 and k_4 are the respective rever constants for the respective binding of radioligand a
competitor to the receptors (in units of min⁻¹ M⁻¹), a
 k_2 and k_4 are the respective reverse-, dissociation-, or o
rate constants (in units of min⁻¹). The e competitor to the receptors (in units of min⁻¹ M^{-1}), and h_2 and h_4 are the respective reverse-, dissociation-, or off-
rate constants (in units of min⁻¹). The equilibrium dis-
sociation constant of the bindin k_2 and k_4 are the respective reverse-, dissociation-, or o
rate constants (in units of min⁻¹). The equilibrium d
sociation constant of the binding of radioligand to rece
tor (K_D) is defined to be k_2/k_1 (units sociation constant of the binding of radioligand to receptor (K_D) is defined to be k_2/k_1 (units of molar); the equilibrium dissociation constant of competitor to receptor (K_I) is likewise defined as k_4/k_3 .

To simplify the equations, we have limited our model
to the situation in which only a small fraction $(\leq 10\%)$
of the radioligand and competitor bind to receptors. Thus equilibrium dissociation constant of competitor to receptor (K_I) is likewise defined as k_4/k_3 .
To simplify the equations, we have limited our model
to the situation in which only a small fraction (<10%)
of the radioli to the situation in which only a small fraction $(\leq 10\%)$ petitor, and receptors for any particular set of kinetic of the radioligand and competitor bind to receptors. Thus constants and ligand, competitor, and receptor tor (K_I) is likewise defined as k_4/k_3 .
To simplify the equations, we have limited our model
to the situation in which only a small fraction (<10%)
of the radioligand and competitor bind to receptors. Thus
throughout t To simplify the equations, we have finited our moder
to the situation in which only a small fraction $(<10\%)$
of the radioligand and competitor bind to receptors. Thus
throughout the experiment the concentrations of free
(of the radioligand and competitor bind to receptors. Thus
throughout the experiment the concentrations of free
(unbound) radioligand and competitor are constants ap-
proximately equal to their respective total concentra-
 (unbound) radioligand and comproximately equal to their restions. This situation is often referred the following equations:
The binding reactions and the following equations:
 $d(RL)/dt = [LMR]$

$d[RL]/dt = [L][R]k_1 - [RL]k_2$	ra
$d[RI]/dt = [I][R]k_3 - [RI]k_4$	is
$[R] = N - [RL] - [RI]$	vi
(here [R] is the concentration of free receptors, N is the total concentration of receptors)	h

the total concentration of receptors)
The three equations above completely describe the

 $[R] = N - [RL] - [RI]$

(here $[R]$ is the concentration of free receptors, N is per

the total concentration of receptors) has

The three equations above completely describe the bear

netics of a competitive binding incubation. S (here $[R]$ is the concentration of free receptors, N is
the total concentration of receptors)
The three equations above completely describe the
kinetics of a competitive binding incubation. Solving
these differential eq the total concentration of receptors, λ is the total concentration of receptors) has
The three equations above completely describe the be
kinetics of a competitive binding incubation. Solving
these differential equation The three equations above completely describe the
kinetics of a competitive binding incubation. Solving
these differential equations (Appendix 1) yields an
expression defining the amount of radioligand bound to
receptors *Nhetics* of a competitive binding incubation. Solving

these differential equations (Appendix 1) yields are

rexpression defining the amount of radioligand bound to

receptors ([*RL*]) as a function of time:
 $[RL] = \frac{Nk_$

$$
[RL] = \frac{Nk_1[L]}{K_F - K_S} \left[\frac{k_4(K_F - K_S)}{K_F K_S} + \frac{(k_4 - K_F)}{K_F} \exp(-K_F t) - \frac{(k_4 - K_S)}{K_S} \exp(-K_S t) \right]^{(1)}
$$

Here the following new variables are used:

$$
K_A = k_1[L] + k_2
$$

\n
$$
K_B = k_3[I] + k_4
$$

\n
$$
K_F = 0.5[(K_A + K_B + \sqrt{(K_A - K_B)^2 + 4k_1k_3[L][I])}]
$$

\n
$$
K_S = 0.5[(K_A + K_B - \sqrt{(K_A - K_B)^2 + 4k_1k_3[L][I])}]
$$

\n*The abbreviations used are: R, receptor; L, radioligand; RL, receptor-radioligand complex; I, competitor; RI, receptor-compactitor com-

The abbreviations used are: R, receptor; L, radioligand; RL, receptor-radioligand complex; I, competitor; RI, receptor-competitor complex; k_1 , association rate of radioligand; k_2 , dissociation rate of radioligand; plex; k_1 , association rate of radioligand; k_2 , dissociation rate of radioligand; k_3 , association rate of competitor; k_4 , dissociation rate of competitor; N , total concentration of receptors; K_A , K_B , K_F [¹²⁵I]iodocyanopindolol.

radioligand binding. As equilibrium is approached, the two exponential terms approach zero and may be ignored.
The equation then reduces to: The general properties of Eq. 1 are as expected. At $me = 0$, the equation reduces to zero; there is no The general properties of Eq. 1 are as expected. At time $= 0$, the equation reduces to zero; there is no radioligand binding. As equilibrium is approached, the The general properties of Eq. 1 are as expected. At time $= 0$, the equation reduces to zero; there is no radioligand binding. As equilibrium is approached, the two exponential terms approach zero and may be ignored. The general properties of Eq. 1 are as expected. At
time = 0, the equation reduces to zero; there is no
radioligand binding. As equilibrium is approached, the
two exponential terms approach zero and may be ignored.
The eq

The equation then reduces to:
\n
$$
[RL] = \frac{Nk_1k_4[L]}{K_FK_S} = \frac{N[L]}{K_D \left(1 + \frac{[I]}{K_I} + \frac{[L]}{K_D}\right)}
$$
\nIn order to compare the binding of radioligand in the
\nresence of competitor with the binding of radioligand

Fresh $K_D\left(1+\frac{[I]}{K_I}+\frac{[L]}{K_D}\right)$
In order to compare the binding of radioligand in the
presence of competitor with the binding of radioligand
alone, we also need the equation describing the binding alone, we also need the binding of radioligand in the presence of competitor with the binding of radioligand alone, we also need the equation describing the binding of radioligand alone to the receptors (1): In order to compare the binding of radio
presence of competitor with the binding c
alone, we also need the equation describin
of radioligand alone to the receptors (1):
 $h_{\text{c}} N[1]$

$$
[RL] = \frac{k_1 N[L]}{K_A} [1 - \exp(-K_A t)] \tag{2}
$$

of radioligand alone to the receptors (1):
 $[RL] = \frac{k_1 N[L]}{K_A} [1 - \exp(-K_A t)]$ (2)

Using Eqs. 1 and 2, one can easily program a computer

to simulate the competitive interactions of ligand, com- $[RL] = \frac{k_1 N[L]}{K_A} [1 - \exp(-K_A t)]$ (2
Using Eqs. 1 and 2, one can easily program a compute
to simulate the competitive interactions of ligand, com-
petitor, and receptors for any particular set of kineti $[KL] = \frac{K_A}{K_A} [1 - \exp(-K_A t)]$ (2)
Using Eqs. 1 and 2, one can easily program a computer
to simulate the competitive interactions of ligand, com-
petitor, and receptors for any particular set of kinetic
constants and ligand, c Using Eqs. 1 and 2, one can easily program a computo simulate the competitive interactions of ligand, copetitor, and receptors for any particular set of kine constants and ligand, competitor, and receptor concentrations. B Using Eqs. 1 and 2, one can easily program a comput
to simulate the competitive interactions of ligand, con
petitor, and receptors for any particular set of kinet
constants and ligand, competitor, and receptor concer-
trat to simulate the competitive interactions of ligand, competitor, and receptors for any particular set of kinetic constants and ligand, competitor, and receptor concentrations. By mathematically manipulating those equations, constants and ligand, competitor, and receptor concentrations. By mathematically manipulating those equations, one can also solve more general problems, as we do under Appendix and discuss below.

WHEN IS EQUILIBRIUM ESTABLISHED?

In the absence of inhibitor, the rate at which the radioligand binds to receptor is determined by the exponential term $\exp(-K_A t)$. The half-life for this binding is $0.69/K_A$. After five half-lives, $3.5/K_A$, equilibrium is WHEN IS EQUILIBRIUM ESTABLISHED!
In the absence of inhibitor, the rate at which the
radioligand binds to receptor is determined by the ex-
ponential term $\exp(-K_A t)$. The half-life for this binding
is $0.69/K_A$. After five h In the absence of inhibitor, the rate at which the radioligand binds to receptor is determined by the exponential term $\exp(-K_A t)$. The half-life for this binding is $0.69/K_A$. After five half-lives, $3.5/K_A$, equilibrium in radioligand binds to receptor is determined by the exponential term $exp(-K_A t)$. The half-life for this bindin
is $0.69/K_A$. After five half-lives, $3.5/K_A$, equilibrium
virtually reached as binding deviates from its true equ
 ponential term $\exp(-K_A t)$. The half-life for this binding
is $0.69/K_A$. After five half-lives, $3.5/K_A$, equilibrium is
virtually reached as binding deviates from its true equi-
librium value by less than 3% . In the prese is $0.69/K_A$. After five half-lives, $3.5/K_A$, equilibrium is virtually reached as binding deviates from its true equilibrium value by less than 3% . In the presence of competitor the situation is more complicated. Severa virtually reached as binding deviates from its true equi-
librium value by less than 3%. In the presence of com-
petitor the situation is more complicated. Several authors
have pointed out that it takes longer for equilibr librium value by less than 3% . In the presence of competitor the situation is more complicated. Several author have pointed out that it takes longer for equilibrium to be established when an inhibitor is present $(2-4)$ lished. we pointed out that it takes longer for equilibrium to established when an inhibitor is present $(2-4)$, but no neral rule defining how long it takes has been pubhed.
Competitive binding experiments are commonly per-
rmed

be established when an inhibitor is present (2–4), but no
general rule defining how long it takes has been pub-
lished.
Competitive binding experiments are commonly per-
formed with a single concentration of radioligand an general rule defining how long it takes has been pub
lished.
Competitive binding experiments are commonly per
formed with a single concentration of radioligand and a
variety of concentrations of competitor in order to genlished.
Competitive binding experiments are commonly per-
formed with a single concentration of radioligand and a
variety of concentrations of competitor in order to gen-
erate a competitive binding curve. The time require Competitive binding experiments are commonly per-
formed with a single concentration of radioligand and a
variety of concentrations of competitor in order to gen-
erate a competitive binding curve. The time required for
th the concentration of competitor in order to generate a competitive binding curve. The time required for
the incubations to reach equilibrium depends, in part, on
the concentration of competitor present. We first con-
side erate a competitive binding curve. The time required for
the incubations to reach equilibrium depends, in part, on
the concentration of competitor present. We first con-
sider the approach to equilibrium when the competit the incubations to reach equilibrium depends, in part, on
the concentration of competitor present. We first con-
sider the approach to equilibrium when the competitor
concentration is equal to its equilibrium IC₅₀. The extreme the approach to equilibrium when the competitor
concentration is equal to its equilibrium IC_{50} . The time
required for this to occur depends on the relative values
of k_2 and k_4 (Appendix 2), and we conside ncentration is equal to its equilibrium IC₅₀. The time
quired for this to occur depends on the relative values
 k_2 and k_4 (Appendix 2), and we consider the two
tremes: first when $k_4 \ll k_2$ and then when $k_4 \gg k_2$

required for this to occur depends on the relative values
of k_2 and k_4 (Appendix 2), and we consider the two
extremes: first when $k_4 \ll k_2$ and then when $k_4 \gg k_2$.
When the dissociation rate of the unlabeled comp of k_2 and k_4 (Appendix 2), and we consider the two extremes: first when $k_4 \ll k_2$ and then when $k_4 \gg k_2$.
When the dissociation rate of the unlabeled competitor is much slower than that of the radioligand $(k_4 \ll k$ extremes: first when $k_4 \ll k_2$ and then when $k_4 \gg k_2$.
When the dissociation rate of the unlabeled competitor
is much slower than that of the radioligand $(k_4 \ll k_2)$,
equilibrium at the IC₅₀ is reached at 1.75/ k_4 . equilibrium at the IC_{50} is reached at 1.75/ $k₄$. Note that is much slower than that of the radioligand $(k_4 \ll k_2)$, equilibrium at the IC_{50} is reached at $1.75/k_4$. Note that in this case the concentration and kinetic constants of the radioligand do not matter. This relationsh the radioligand do not matter. This relationship is only useful experimentally when k_4 is known or can be estimated (see below).
In many experimental protocols the radioligand dissociates from receptors more slowly tha this case the concentration and kinetic constants of
this case the concentration and kinetic constants of
e radioligand do not matter. This relationship is only
eful experimentally when k_4 is known or can be esti-
ated

the radioligand do not matter. This relationship is onluseful experimentally when k_4 is known or can be est mated (see below).
In many experimental protocols the radioligand dissociates from receptors more slowly than petitor $(k_2 \ll k_4)$. As shown in Appendix 2, the length of time required to reach equilibrium at the IC_{50} depends mated (see below).
In many experimental protocols the radioligand dis-
sociates from receptors more slowly than does the com-
petitor $(k_2 \ll k_4)$. As shown in Appendix 2, the length of
time required to reach equilibrium a In many experimental protocols the radioligand dis-
sociates from receptors more slowly than does the com-
petitor $(k_2 \ll k_4)$. As shown in Appendix 2, the length of
time required to reach equilibrium at the IC₅₀ depend petitor $(k_2 \ll k_4)$. As shown in Appendix 2, the length of time required to reach equilibrium at the IC₅₀ depends on the radioligand concentration. When the radioligand concentration is low $([L] \ll K_D)$, the time required

same in the absence of competitor as in the presence of competitor, $3.5/k_2$. As the radioligand concentration is k
same in the absence of competitor as in the presence of
competitor, $3.5/k_2$. As the radioligand concentration is
increased infinitely, the time required to reach equilibsame in the absence of competitor as in the presence
competitor, $3.5/k_2$. As the radioligand concentration
increased infinitely, the time required to reach equil
rium is only halved to $1.75/k_2$ (Fig. 1; Appendix 2). same in the absence of competitor as in the presence of competitor, $3.5/k_2$. As the radioligand concentration is increased infinitely, the time required to reach equilibrium is only halved to $1.75/k_2$ (Fig. 1; Appendix same in the absence of competitor as in the presence
competitor, $3.5/k_2$. As the radioligand concentration
increased infinitely, the time required to reach equil
rium is only halved to $1.75/k_2$ (Fig. 1; Appendix 2).
the competitor, $3.5/k_2$. As the radioligand concentration is
increased infinitely, the time required to reach equilib-
rium is only halved to $1.75/k_2$ (Fig. 1; Appendix 2). In
the absence of competition, however, the rate o tration. Thus the time required to reach equilibration.
Thus is only halved to $1.75/k_2$ (Fig. 1; Appendix 2).
the absence of competition, however, the rate of radiologand binding increases linearly with radioligand conce rium is only halved to $1.75/k_2$ (Fig. 1; Appendix 2). In the absence of competition, however, the rate of radioligand binding increases linearly with radioligand concentration. Thus the higher the radioligand concentrati the absence of competition, however, the rate of radio gand binding increases linearly with radioligand concentration. Thus the higher the radioligand concentration to be reached in the presence of the compitor and the tim The above analyses assumed that the competitor. Thus the higher the radioligand concentration, e greater the disparity between the time required for ullibrium to be reached in the presence of the competitor and the time r the greater the disparity between the time required for
equilibrium to be reached in the presence of the compet-
itor and the time required in its absence.
The above analyses assumed that the competitor was
present at its

equilibrium to be reached in the presence of the competitor and the time required in its absence.
The above analyses assumed that the competitor was
present at its equilibrium IC_{50} . As seen in Fig. 2, the
slope of the itor and the time required in its absence.
The above analyses assumed that the competitor was
present at its equilibrium IC_{50} . As seen in Fig. 2, the
slope of the competitive binding curve decreases slightly
over time; present at its equilibrium IC₅₀. As seen in Fig. 2, the
slope of the competitive binding curve decreases slightly
over time; thus the periphery of the curve may not be as
close to equilibrium as is the middle of the cur over time; thus the periphery of the curve may not be as close to equilibrium as is the middle of the curve. The time required for the entire curve to reach equilibrium completely depends on the slower of the two dissocia close to equilibrium as is the middle of the curve. The
time required for the entire curve to reach equilibrium
completely depends on the slower of the two dissociation
rate constants k_2 and k_4 . When the radioligand time required for the entire curve to reach equilibrium
completely depends on the slower of the two dissociation
rate constants k_2 and k_4 . When the radioligand disso-
ciates more slowly $(k_2 < k_4)$, full equilibrium completely depends on the slower of the two dissociat
rate constants k_2 and k_4 . When the radioligand dis
ciates more slowly $(k_2 < k_4)$, full equilibrium is reach
at 3.5/ k_2 ; equilibrium is reached most slowly at h rate constants k_2 and k_4 . When the radioligand dissociates more slowly $(k_2 < k_4)$, full equilibrium is reached radioliant 3.5/ k_2 ; equilibrium is reached most slowly at high concentrations of competitor, where ver at 3.5/ k_2 ; equilibrium is reached most slowly at high concentrations of competitor, where very little radioli-
gand ever binds. Conversely, in situations where the competitor dissociates more slowly $(k_4 < k_2)$, equilib concentrations of competitor, where very little ragand ever binds. Conversely, in situations wher competitor dissociates more slowly $(k_4 < k_2)$, equililis reached at $3.5/k_4$, and equilibrium is reached slowly at very low gand ever binds. Conversely, in situations where the competitor dissociates more slowly $(k_4 < k_2)$, equilibrium is reached most slowly at very low concentrations of competitor.⁵ These mathematical relationships can read

is reached at 3.5/ k_4 , and equilibrium is reached m
slowly at very low concentrations of competitor.⁵
These mathematical relationships can readily be
plied in an experimental context. The value of k_2
routinely dete gand is bound to tissue and the rate at which is bounded in the rate mathematical relationships can readily be applied in an experimental context. The value of k_2 routinely determined in "off-rate" experiments; radioly These mathematical relationships can readily be applied in an experimental context. The value of k_2 is routinely determined in "off-rate" experiments; radioli-
gand is bound to tissue and the rate at which it disso-
ci routinely determined in "off-rate" experiments; radioli-
gand is bound to tissue and the rate at which it disso-
ciates is determined after diluting the incubation mixture
eor after adding an excess of an unlabeled recept roductly determined in on rate experiments, radiom
gand is bound to tissue and the rate at which it disso-
ciates is determined after diluting the incubation mixture
or after adding an excess of an unlabeled receptor-speciates is determined after diluting the incubation mixture
or after adding an excess of an unlabeled receptor-spe-
cific drug. The time for essentially all (97%) of the
radioligand to dissociate is $3.5/k_2$. After incubat or after adding an excess of an unlabeled receptor-spe-
cific drug. The time for essentially all $(97%)$ of the
radioligand to dissociate is $3.5/k_2$. After incubating that
long, all competitive binding experiments in whic cific drug. The time for essentially all (97%) of the radioligand to dissociate is $3.5/k_2$. After incubating that long, all competitive binding experiments in which $k_2 \leq k_4$ (regardless of radioligand concentration) long, all competitive binding experiments in which $k_2 \le k_4$ (regardless of radioligand concentration) will have reached equilibrium. When high concentrations of radioligand (≥ 10 K_D) are used and $k_2 \ll k_4$, equili (regardless of radioligand concentration) will have
ached equilibrium. When high concentrations of radiation and $k_2 \ll k_4$, equilibrium
e IC₅₀ will have been reached by half that much tim
For some radioligands there wi

reached equilibrium. When high concentrations of radioligand $(\geq 10 K_D)$ are used and $k_2 \ll k_4$, equilibrium a
the IC₅₀ will have been reached by half that much time.
For some radioligands there will be no problem foll bilgand $(\geq 10 K_D)$ are used and $k_2 \ll k_4$, equilibrium at rece
the IC₅₀ will have been reached by half that much time.
For some radioligands there will be no problem follow-
ing the guideline derived above. For other the IC₅₀ will have been reached by half that much time. ut
For some radioligands there will be no problem follow-
ing the guideline derived above. For other radioligands,
however, it may not be feasible to allow an incu For some radioligands there will be no problem following the guideline derived above. For other radioligand however, it may not be feasible to allow an incubation proceed that long. For example, the dissociation raconstan ing the guideline derived above. For other radioligands,
however, it may not be feasible to allow an incubation to
proceed that long. For example, the dissociation rate
constant (k_2) of $[^{125}I]ICYP$ from *beta*-adrenerg proceed that long. For example, the dissociation rate
constant (k_2) of $[^{125}]$ ICYP from *beta*-adrenergic recep-
tors on intact S49 lymphoma cells is 0.0045 min⁻¹ (5). A
competitive binding experiment, using a high r constant (k_2) of $[^{125}][ICYP]$ from *beta*-adrenergic receptors on intact S49 lymphoma cells is 0.0045 min⁻¹ (5). A competitive binding experiment, using a high radioligano concentration, would require nearly 400 min t tors on intact S49 lymphoma cells is 0.0045 min⁻¹ (5). A competitive binding experiment, using a high radioligand ti concentration, would require nearly 400 min to reach equilibrium. In many contexts this would be imp concentration, would require nearly 400 min to reach equilibrium. In many contexts this would be impractical. con
As can be seen in Fig. 4, the IC_{50} can change very slowly is required the final phases of the experiment equilibrium. In many contexts this would be impractic As can be seen in Fig. 4, the IC₅₀ can change very slow during the final phases of the experiment, and an a ceptable approximation of the equilibrium IC₅₀ may atta during the final phases of the experiment, and an acceptable approximation of the equilibrium IC_{50} may be attained in less than half the time required for equilibrium to be established. This is best determined experime

FIG. 1. *Effect of radioligand concentration on the time required for a competitive binding experiment to reach equilibrium*
The time required for radioligand binding to reach equilibrium in
the presence of an IC₈₀ conc FIG. 1. *Effect of radioligand concentration on the time required for a competitive binding experiment to reach equilibrium* The time required for radioligand binding to reach equilibrium in the presence of an IC_{80} con the presence of an IC₈₀ concentration of competitor is plotted against radioligand concentration ([L]). When $k_4 \leq k_2$ this time does not depend on [L]; if $k_4 \ll k_2$ the equilibration time is $1.75/k_4$; if $k_4 = k_2$ radioligand concentration ([L]). When $k_4 \le k_2$ this time does not depend
on [L]; if $k_4 \ll k_2$ the equilibration time is $1.75/k_4$; if $k_4 = k_2$ the
equilibration time is $3.5/k_4$. When $k_2 \ll k_4$ the situation is more
 on [*L*]; if $k_4 \ll k_2$ the equilibration time is 1.75/k_i; if $k_4 = k_2$ the equilibration time is 3.5/k_i. When $k_2 \ll k_4$ the situation is more complicated. At low radioligand concentrations the time required to reach equilibration time is 3.5/ k_1 . When $k_2 \ll k_1$ the situation is more complicated. At low radioligand concentrations the time required to reach equilibrium is 3.5/ k_2 ; this is the same as the time required for 97% of t complicated. At low radioligand concentrations the time required to reach equilibrium is $3.5/k_2$; this is the same as the time required for 97% of the radioligand to dissociate in an "off rate" experiment. When very larg reach equilibrium is $3.5/k_2$; this is the same as the time required for 97% of the radioligand to dissociate in an "off rate" experiment. When very large amounts of radioligand are used, the IC_{50} is much higher and th 197% of the radioligand to dissociate in an "off rate" experiment. Where we was the radioligand to dissociate in an "off rate" experiment. Where we was the equilibration time is halved. Also shown is the time required fra very large amounts of radioligand are used, the IC_{60} is much higher and
the equilibration time is halved. Also shown is the time required for
radioligand binding to reach equilibrium in the absence of competition.
time

the equilibration time is halved. Also shown is the time required for
radioligand binding to reach equilibrium in the absence of competition.
time required for competitive binding curves to reach
equilibrium (as long as th radiologiana binding to reach equilibrium in the absence of competition.

time required for competitive binding curves to reach

equilibrium (as long as the system in in a zone A). Nor

does altering the receptor concentra equilibrium (as long as the system in in a zone A). Nor does altering the receptor concentration affect the time required for equilibrium to be reached when radioligand alone binds to receptors. This is because altering th equilibrium (as long as the system in in a zone A). Note altering the receptor concentration affect the time-
required for equilibrium to be reached when radioligan
alone binds to receptors. This is because altering the
re does altering the receptor concentration affect the time
required for equilibrium to be reached when radioligand
alone binds to receptors. This is because altering the
receptor concentration does not change any of the time required for equilibrium to be reached when radioligand
alone binds to receptors. This is because altering the
receptor concentration does not change any of the time-
dependent terms in Eqs. 1 and 2. If, for example, one
d receptor concentration does not change any of the time-
dependent terms in Eqs. 1 and 2. If, for example, one
doubles the number of receptors present, the number of
receptors bound by radioligand or competitor each min-
ut dependent terms in Eqs. 1 and 2. If, for example, one doubles the number of receptors present, the number of receptors bound by radioligand or competitor each minute will be doubled. But, since there are twice as many rece doubles the number of receptors present, the number of receptors bound by radioligand or competitor each minute will be doubled. But, since there are twice as many receptors present, the time required to reach equilibrium ute will be doubled. But, since there are twice as many
receptors present, the time required to reach equilibrium
is unchanged.
COMPETITIVE BINDING CURVES BEFORE EQUILIBRIUM IS
REACHED

REACHED

during the final phases of the experiment, and an ac-
ceptor concentrations of pre-equilibrium
ceptable approximation of the equilibrium IC_{50} may be binding reactions. They concluded that the IC_{50} increases
attained unchanged.
MPETITIVE BINDING CURVES BEFORE EQUILIBRIUM IS
ACHED
Now that we have derived expressions defining the
ne required for competitive binding incubation to reach COMPETITIVE BINDING CURVES BEFORE EQUILIBRIUM IS
REACHED
Now that we have derived expressions defining the
time required for competitive binding incubation to reach
equilibrium, we turn to the next question: What do EXAMPLETTIVE BINDING CORVES BEFORE EQUILIBRIOM IS
REACHED
Now that we have derived expressions defining the
time required for competitive binding incubation to reach
equilibrium, we turn to the next question: What do
compe Now that we have derived expressions defining the
time required for competitive binding incubation to reach
equilibrium, we turn to the next question: What do
competitive binding curves look like before equilibrium
is reac time required for competitive binding incubation to reach
equilibrium, we turn to the next question: What do
competitive binding curves look like before equilibrium
is reached? Ehlert *et al.* (3) approached this question equilibrium, we turn to the next question: What do competitive binding curves look like before equilibrium is reached? Ehlert *et al.* (3) approached this question by performing numerical simulations of pre-equilibrium bi competitive binding curves look like before equilibrium
is reached? Ehlert *et al.* (3) approached this question by
performing numerical simulations of pre-equilibrium
binding reactions. They concluded that the IC₅₀ inc is reached? Ehlert *et al.* (3) approached this question by performing numerical simulations of pre-equilibrium binding reactions. They concluded that the IC_{50} increases over time if $k_2 < k_4$ and decreases if $k_4 < k_2$ performing numerical simulations of pre-equilibri
binding reactions. They concluded that the IC_{50} increa
over time if $k_2 < k_4$ and decreases if $k_4 < k_2$. Th
generalizations were based on simulations of seve
binding c binding reactions. They concluded that the IC₅₀ increases
over time if $k_2 < k_4$ and decreases if $k_4 < k_2$. These
generalizations were based on simulations of several
binding curves at a few time points. We used an ana points. Incruinductions were stated on simulations of see
Inding curves at a few time points. We used an an
al approach to prove these generalizations. As show, the situation is more complicated at early
ints.
To understand the ch ical approach to prove these generalizations. As shown
below, the situation is more complicated at early time
points.
To understand the changing positions of non-equilib-
rium competition curves, it is instructive to compa

below, the situation is more complicated at early time
points.
To understand the changing positions of non-equilib-
rium competition curves, it is instructive to compare first
the kinetics of radioligand binding in the abs points.
To understand the changing positions of non-equi-
rium competition curves, it is instructive to compare if
the kinetics of radioligand binding in the absence and
the presence of competitor (Fig. 3A). Because comp
t rium competition curves, it is instructive to compare first
the kinetics of radioligand binding in the absence and in
the presence of competitor (Fig. 3A). Because competi-
tion binding curves are displayed as the ratio of the kinetics of radioligand binding in the absence and in the presence of competitor (Fig. 3A). Because competi-

Altering the receptor concentration does not affect the
⁵ Our definition of equilibrium, $3.5/k_2$ and $3.5/k_4$, may be practically
irrelevant at extreme concentrations of competitor. At very high com-
petitor concentrat Findering the receptor concentration does not arect the
⁶ Our definition of equilibrium, $3.5/k_2$ and $3.5/k_4$, may be practical
irrelevant at extreme concentrations of competitor. At very high com-
petitor concentratio ⁶ Our definition of equilibrium, $3.5/k_2$ and $3.5/k_4$, may be practically irrelevant at extreme concentrations of competitor. At very high competitor concentrations, virtually no radioligand will *ever* bind, and $\frac{1$ ⁶ Our definition of equilibrium, $3.5/k_2$ and $3.5/k_4$, may be practivelevant at extreme concentrations of competitor. At very high opetitor concentrations, virtually no radioligand will *ever* bind, "equilibrium" will ⁶ Our definition of equilibrium, $3.5/k_2$ and $3.5/k_4$, may be practically irrelevant at extreme concentrations of competitor. At very high competitor concentrations, virtually no radioligand will *ever* bind, and "equi equilibration to concentrations, virtually no radioligand will ever bind, and "equilibrium" will be reached instantaneously. At very low concentrations of competitor, the competitor can be essentially ignored and the equi **Produce the equilibrium**" will be reached instantaneously. At very low concentrations of competitor, the competitor can be essentially ignored and the equilibration time is that of the radioligand alone, $3.5/K_A$. However Expansion will be competitor can be essentially ignoted.

Equilibration time is that of the radioligand alone, $3.5/K$,

by deriving the equilibration time for these extreme cases

that all parts of the competition curve wi

time

I og COMPETITORJ (M)
FIG. 2. Change in apparent "slope factor" or "psuedo-Hill slope" of
Simulated competitive binding experiments are shown on a normal-
discale (top) and on an absolute scale (bottom). To calculate the Simulated competitive binding experiments are shown on a normalized scale *(top)* and on an absolute scale *(bottom)*. To calculate these curves, the following values were used: [radioligand] = 35 pm , $k_1 = 5.86$ curves, the following values were used: [radioligand] = 35 pM, $k_1 = 5.86$
x 10⁸ min⁻¹ M⁻¹, $k_2 = 0.0045$ min⁻¹ [thus $K_D = 7.6$ pM; these constants
are those of $\binom{125}{1}$ [CYP binding to *beta*-adrenergic recept Simulated competitive binding experiments are shown on a normalized scale (top) and on an absolute scale (bottom). To calculate these
curves, the following values were used: [radioligand] = 35 pM, $k_1 = 5.86 \times 10^8$ min⁻ ized scale (top) and on an absolute scale (bottom). To calculate these
curves, the following values were used: [radioligand] = 35 pM, $k_1 = 5.86 \times 10^8$ min⁻¹ M⁻¹, $k_2 = 0.0045$ min⁻¹ [thus $K_D = 7.6$ pM; these const $f(x)$ $f(x)$ are those of $[{}^{125}]$ ICYP binding to be
cells (5)], $k_3 = 1000k_1$, $k_4 = 100k_2$. Th
following time points (minutes: $a = 1$,
1296. The respective "slope factors"
curve) are 1.1, 1.0, 1.2, 1.2, and 1.0. Sens (3)], $\kappa_3 = 1000\kappa_1$, $\kappa_4 = 100\kappa_2$. The curves were calculated at the following time points (minutes: $a = 1$, $b = 6$, $c = 36$, $d = 216$, and $e = 1296$. The respective "slope factors" (calculated at the IC₅₀

1296. The respective "slope factors" (calculated at the IC_{50} of eac
curve) are 1.1, 1.0, 1.2, 1.2, and 1.0.
3B. At the very earliest time points the binding of radio
oligand is unaffected by the presence of (unbound) c petitor; thus binding in the presence of competitor; thus binding in the presence of (unbound) competitor; thus binding in the presence of competitor is 100% of the binding in its absence. This ratio immedi-3B. At the very earliest time points the binding of repligand is unaffected by the presence of (unbound) copetitor; thus binding in the presence of competito:
100% of the binding in its absence. This ratio immediely decrea 3B. At the very earliest time points the binding of radi-
oligand is unaffected by the presence of (unbound) com-
ompetitor; thus binding in the presence of competitor is
 100% of the binding in its absence. This ratio value. titor; thus binding in the presence of competitor is 0% of the binding in its absence. This ratio immedi-
by decreases and eventually reaches its equilibrium
lue.
When the radioligand dissociates from the receptors
pre ra

100% of the binding in its absence. This ratio immediately decreases and eventually reaches its equilibrium calculum.

When the radioligand dissociates from the receptors $\frac{m_0}{m_0}$ or rapidly than does the competitor value. When the radioligand dissociates from the receptors
more rapidly than does the competitor $(k_2 > k_4)$, the
binding of radioligand in the presence of the competitor
overshoots its equilbrium value: at some intermedia When the radioligand dissociates from the receptors
more rapidly than does the competitor $(k_2 > k_4)$, the
binding of radioligand in the presence of the competitor
overshoots its equilbrium value: at some intermediate
time When the radionigand dissociates from the receptors

more rapidly than does the competitor $(k_2 > k_4)$, the

binding of radioligand in the presence of the competitor

overshoots its equilibrium value: at some intermediate
 absence of competitor, however, the radioligand binding presence of rapidly dissociating (upper curve) or slowly dissociating
in the presence of the competitor constantly decreases (lower curve) competition is displayed as overshoots its equilbrium value: at some intermediate time points there is more radioligand bound to receptors than there will be at equilibrium (ref. 2; Appendix 3). Fixtynessed as a percentage of radioligand binding in than there will be at eq
Expressed as a percentag
absence of competitor, h
in the presence of the co
as is shown in Fig. 3B.
When the radioligand pressed as a percentage of radioligand binding in the
sence of competitor, however, the radioligand binding
the presence of the competitor constantly decreases,
is shown in Fig. 3B.
When the radioligand dissociates more s

absence of competitor, however, the radioligand binding
in the presence of the competitor constantly decreases,
as is shown in Fig. 3B.
When the radioligand dissociates more slowly than the
competitor $(k_2 < k_4)$, the spec as is shown in Fig. 3B.

When the radioligand dissociates more slowly than the used

competitor $(k_2 < k_4)$, the specific binding does not over-

shoot its equilibrium value but rather monotonically

approaches that equili When the radioligand dissociates more slowly than the micrompetitor $(k_2 < k_4)$, the specific binding does not overshoot its equilibrium value but rather monotonically approaches that equilibrium (Fig. 3A). Expressed as a competitor $(k_2 < k_4)$, the specific binding does not over-
shoot its equilibrium value but rather monotonically
approaches that equilibrium (Fig. 3A). Expressed as a For-
percentage of the radioligand binding in the absen

percentage drops, then it increases, as shown in Fig. 3B.
At equilibrium the properties of a competitive binding
curve are determined by the K_I of the competitor, and percentage drops, then it increases, as shown in Fig. 3B.
At equilibrium the properties of a competitive binding
curve are determined by the K_I of the competitor, and
every competitor with a given K_I will yield the sa percentage drops, then it increases, as shown in Fig. 3B.
At equilibrium the properties of a competitive binding
curve are determined by the K_I of the competitor, and
every competitor with a given K_I will yield the sa percentage drops, then it increases, as shown in Fig. 3B.
At equilibrium the properties of a competitive binding
curve are determined by the K_I of the competitor, and
every competitor with a given K_I will yield the sa curve are determined by the K_I of the competitor, and
every competitor with a given K_I will yield the same
equilibrium competitive binding curve regardless of the
individual values of k_3 and k_4 ($K_I = k_4/k_3$). Be every competitor with a given K_I will yield the same
equilibrium competitive binding curve regardless of the
individual values of k_3 and k_4 ($K_I = k_4/k_3$). Before equi-
librium is reached, however, the kinetics of

FIG. 3. *Binding of a radioligand in the absence and presence of a competitor*

FIG. 3. Binding of a radioligand in the absence and presence of competitor
A. The binding of a radioligand to receptor is shown in the absence for competitor (top curve), in the presence of a competitor that disso-
ciates competitor
A. The binding of a radioligand to receptor is shown in the absence
of competitor (*top curve*), in the presence of a competitor that disso-
ciates from the receptors more slowly than does the radioligand (k_4 A. The binding of a radioligand to receptor is shown in the absence
of competitor (*top curve*), in the presence of a competitor that disso-
ciates from the receptors more slowly than does the radioligand $(k_4 < k_2)$; midd ciates from the receptors more slowly than does the radioligand $(k_4 < k_2;$ middle curve), and in the presence of a competitor that dissociates more rapidly than does the radioligand $(k_2 < k_4;$ bottom curve). The vertical shows the curve), and in the presence of a competitor that dissociates
more rapidly than does the radioligand $(k_2 < k_4)$; bottom curve). The
vertical axis is radioligand binding relative to the equilibrium binding
of radi the presence of competitor. In the presence of competitor, the vertical axis is radioligand binding relative to the equilibrium binding of radioligand alone. Note that equilibrium is reached more slowly in the presence of wertical axis is radioligand binding relative to the equilibrium binding
of radioligand alone. Note that equilibrium is reached more slowly in
the presence of competitor. In the case of the slowly dissociating
competitor, version and a shown; and alone. Note that equilibrium is reached more slowly in the presence of competitor. In the case of the slowly dissociating competitor, equilibrium has not yet been established at the right of the cu rapidly dissociating competitor. In the case of the slowly dissociating competitor, equilibrium has not yet been established at the right of the curve shown; at equilibrium this curve will merge with the curve of the rapid

competitor, equilibrium has not yet been established at the right of the curve shown; at equilibrium this curve will merge with the curve of the rapidly dissociating competitor.
B. At each time point the amount of radiolig rapidly dissociating competitor.
 EXECUTE: B. At each time point the amount of radioligand binding in the

presence of rapidly dissociating (*upper curve*) or slowly dissociating

(*lower curve*) competitior is displayed B. At each time point the amount of radioligand binding in the presence of rapidly dissociating (*upper curve*) or slowly dissociating (*lower curve*) competitior is displayed as a percentage of the binding of the radioli the radioligand alone at that time point. The following values we
used to calculate these curves: $k_1 = 1.0 \times 10^8$ min⁻¹ M^{-1} , $k_2 = 0.05$
min⁻¹, [radioligand] = 3 nM, [competitor] = 100 nM. [These values a
those o lets (8) the rapidle of these curves: $k_1 = 1.0 \times 10^8$ min⁻¹ M^{-1} , $k_2 = 0.037$ min⁻¹, [radioligand] = 3 nM, [competitor] = 100 nM. [These values are those of [³H]yohimbine binding to *alpha*₂-adrenergic recept min⁻¹, [radioligand] = 3 nM, [competitor] = 100 nM. [These values are those of [³H]yohimbine binding to *alpha*₂-adrenergic receptors on platelets (8)]. For the rapidly dissociating competitor, $k_3 = k_1$ and $k_4 = 1$

curves over time
curves over time
curves over time
curves over time
curves over time
Maintaining a constant K_I **, the association and dissociation rates of** FIG. 4. Change in the position of competitive radioligand binding
curves over time
The IC_{80} of a competitive binding curve is plotted against time.
Maintaining a constant K_I , the association and dissociation rates of the competitive binding curve is plotted against time.
 Competitive varied to create the family of curves shown. In the top curve, the competitor associates and dissociates slowly; these rates the family of curves shown *turves over time*

The IC_{50} of a competitive binding curve is plotted against time.

Maintaining a constant K_I , the association and dissociation rates of

the competitor were varied to create the family of curves sh The IC₅₀ of a competitive binding curve is plotted against time.
Maintaining a constant K_I , the association and dissociation rates of
the competitor were varied to create the family of curves shown. In the
top curve Maintaining a constant K_I , the association and dissociation rates of
the competitor were varied to create the family of curves shown. In the
top curve, the competitor associates and dissociates slowly; these rates
are p top curve, the competitor associates and dissociates slowly; these rates
are proportionately more rapid in the *lower curves*. To calculate the
curves shown, the following values were used: $k_1 = 5.86 \times 10^8$ min⁻¹
 M^{-1 are proportionately more rapid in the *lower curves*. To calculate the curves shown, the following values were used: $k_1 = 5.86 \times 10^8$ min⁻¹, $k_2 = 0.0045$ min⁻¹, and [radioligand] = 35 pM (same as Fig. 2). In the *t* the top curve, $k_3 = 10^3$ min⁻¹, $M_4 = 10^{-3}$ min⁻¹, and the K_l is therefore 10^{-6} M. Each succeeding curve was generated by increasing both k_3 and k_4 by half an order of magnitude. The bottom curve, theref 10^{-6} M. Each succeeding curve was generated by increasing both k_3 and = 10^7 min⁻¹ M⁻¹ and $k_4 = 10$ min⁻¹. A computer calculated the entire competitive binding curve for each set of rate constants at each time point using Eq. 1, and found the IC₈₀. At equilibrium all of the curve point using Eq. 1, and found the IC_{50} . At equilibrium all of the curves

converge with an IC_{50} of 5.6 μ M. The last time point shown is 200 min.
The lowest curves shown ("rapid k_3 , k_4 ") represent a common situation: the radioligand dissociates much more slowly than the competitor, b converge with an IC₈₀ of 5.6 μ M. The last time point shown is 200 min.

The lowest curves shown ("rapid k_3 , k_4 ") represent a common

situation: the radioligand dissociates much more slowly than the com-

petito K_i at early time points and gradually increases to its equilibrium value defined by the Cheng and Prussoff equation (9), $IC_{50} = K_I(1 + [L]/K_D)$. Thus, when $[L] \ll K_D$, the IC_{50} will be nearly constant over time. value defined by the Cheng and Prussoff equation (9), IC₅₀ = $K_I(1 + [L]/K_D)$. Thus, when $[L] \ll K_D$, the IC₅₀ will be nearly constant over time.
combinations of k_4 and k_3 yielding the same K_I (Fig. 4).
In all of t

In all of the curves the inhibition of radioligand binding
at equilibrium is identical; only the kinetics of inhibition
differ. As k_3 and k_4 increase, the initial decrease in the combinations of k_4 and k_3 yielding the same K_I (Fig. 4).
In all of the curves the inhibition of radioligand binding
at equilibrium is identical; only the kinetics of inhibition
differ. As k_3 and k_4 increase, In all of the curves the inhibition of radioligand binding
at equilibrium is identical; only the kinetics of inhibition
differ. As k_3 and k_4 increase, the initial decrease in the
IC₅₀ becomes more pronounced. In t differ. As k_3 and k_4 increase, the initial decrease in the IC_{50} becomes more pronounced. In the most extreme case, when k_3 and k_4 are extremely fast, the minimum IC_{50} occurs instantaneously and has a val \prod_{60}^{100} becomes models and \prod_{60}^{100} occurs instand pendix 4). In all ot and occurs later.
These findings case, when k_3 and k_4 are extremely fast, the minimum IC_{50} occurs instantaneously and has a value of K_I (Appendix 4). In all other cases, that minimum IC_{50} is larger and occurs later.
These findings are exten $\prod_{s=0}^{\infty}$ occurs instantaneously and has a value of K_I (*A* pendix 4). In all other cases, that minimum IC₅₀ is larend occurs later.
and occurs later.
These findings are extended to entire competitive binding cur

pendix 4). In all other cases, that minimum IC_{50} is larger
and occurs later.
These findings are extended to entire competitive
binding curves in Fig. 5. As Ehlert *et al.* (3) demonstrated, for
when $k_4 < k_2$, the IC_{5 and occurs later. 20

These findings are extended to entire competitive

binding curves in Fig. 5. As Ehlert *et al.* (3) demonstrated, for

when $k_4 < k_2$, the IC₅₀ of the competitive binding curve

yeradually decrease binding curves in Fig. 5. As Ehlert *et al.* (3) demonstrated, for when $k_4 < k_2$, the IC₅₀ of the competitive binding curve value gradually decreases over time; the curve moves to the The left. If, however, $k_4 > k_2$, when $k_4 < k_2$, the IC₅₀ of the competitive binding curve
gradually decreases over time; the curve moves to the
left. If, however, $k_4 > k_2$, then the IC₅₀ will first decrease
and later increase. That initial decrease explanally decrease. That initial decrease in the IC_{50} will first decrease
and later increase. That initial decrease in the IC_{50} may
occur quickly and one may therefore observe only the
later increase, as Ehlert *et* and later increase. That initial decrease in the IC_{50} may
occur quickly and one may therefore observe only the
later increase, as Ehlert *et al.* (3) did. In this case the
minimum (leftmost) value of the IC_{50} will b *K1.*

ETICS OF COMPETITIVE RADIOLIGAND BINDING 5
"Slope factors" or "pseudo-Hill slopes" are used to
scribe the shape of a competitive binding curve. We INETICS OF COMPETITIVE RADIOLIGAND BINDING 5

"Slope factors" or "pseudo-Hill slopes" are used to

describe the shape of a competitive binding curve. We

have simulated many pre-equilibrium competition curves INETICS OF COMPETITIVE RADIOLIGAND BINDING 5

"Slope factors" or "pseudo-Hill slopes" are used to

describe the shape of a competitive binding curve. We

have simulated many pre-equilibrium competition curves

on a compute

The constants used in Fig. 4 were used to calculate competitive
ding curves over time
The constants used in Fig. 4 were used to calculate competitive
ding curves at the following times (minutes: 2, 5, 10, 20, 30, 50, 100, FIG. 5. Change in competitive binding curves over time
The constants used in Fig. 4 were used to calculate competitive
binding curves at the following times (minutes: 2, 5, 10, 20, 30, 50, 100,
200, 400, 800, and 10,000. FIG. 5. *Change in comp*
The constants used in
binding curves at the follo
200, 400, 800, and 10,000.
A. The change in the co FIG. 5. Change in competitive binding curves over time
The constants used in Fig. 4 were used to calculate competitive
iding curves at the following times (minutes: 2, 5, 10, 20, 30, 50, 100,
0, 400, 800, and 10,000.
A. T The constants used in Fig. 4 were used to calculate competitive
binding curves at the following times (minutes: 2, 5, 10, 20, 30, 50, 100,
200, 400, 800, and 10,000.
A. The change in the competitive binding curve over tim

binding curves at the following times (minutes: 2, 5, 10, 20, 30, 50, 100, 200, 400, 800, and 10,000.

A. The change in the competitive binding curve over time is shown

for the case where $k_4 < k_2$. These curves were gen 200, 400, 800, and 10,000.
A. The change in the competitive binding curve over time is shown
for the case where $k_4 < k_2$. These curves were generated using the
values noted above for the *topmost curve* of Fig. 4 $(k_4 = 1$ A. The cl
for the case
values noted
The *heavy li*
over time.
B. Compo the case where $k_4 < k_2$. These curves were generated using the ues noted above for the *topmost curve* of Fig. 4 $(k_4 = 10^{-3} \text{ min}^{-1})$.
e *heavy line* connects the IC₈₀ values; note that these values decrease er time.
B values noted above for the *topmost curve* of Fig. 4 $(k_4 = 10^{-3} \text{ min}^{-1})$.
The *heavy line* connects the IC₅₀ values; note that these values decrease over time.
B. Competitive binding curves were generated to match the

The *theory* and connects the rogy values, note that these values decrease
over time.
B. Competitive binding curves were generated to match the middle
curve of Fig. 4 ($k_4 = 10^{-1}$ min⁻¹). Note that the IC₆₀ first dec

b curve of Fig. 4 $(k_4 = 10^{-1} \text{ min}^{-1})$. Note that the IC₅₀ first decreases,
then increases.
C. Here the competitive binding curves are plotted to match the
bottom curve in Fig. 4 $(k_4 = 10 \text{ min}^{-1})$. Here the initial de once in Fig. 1.1.4 The initial the IC₅₀ instructed is,
then increases.
C. Here the competitive binding curves are plotted to match the
bottom curve in Fig. 4 ($k_4 = 10 \text{ min}^{-1}$). Here the initial decreases in IC₅₀
occ

ing experiments

To demonstrate the feasibility of determining the K_l of a competing ligand from non-equilibrium data, we analyzed the kinetics of **[1251]** FIG. 6. Determining the K_l from non-equilibrium competitive binding experiments
To demonstrate the feasibility of determining the K_l of a competing
ligand from non-equilibrium data, we analyzed the kinetics of $\binom{12$ Elignal from non-equilibrium data, we analyzed the kinetics of $[126]$
ICYP binding to *beta*-adrenergic receptors on intact S49 lymphoma
cells in the presence of 1 nM propranolol. Using methods published
elsewhere (5), I CCYP binding to *beta*-adrenergic receptors on intact S49 lymphoma
cells in the presence of 1 nM propranolol. Using methods published
elsewhere (5), ICYP and propranolol were added simultaneously to the
cells and the spec between the presence of 1 nM propranolol. Using methods published elsewhere (5), ICYP and propranolol were added simultaneously to the cells and the specific ICYP binding was determined at various times between 0.5 and 4 m belsewhere (5), ICYP and propranolol were added simultaneously to the cells and the specific ICYP binding was determined at various times between 0.5 and 4 min thereafter. The data were fit to Eq. 1 in the text using a Ma From Tektronix (3), or a time precific ICYP binding was determined at various times
between 0.5 and 4 min thereafter. The data were fit to Eq. 1 in the text
using a Marquardt nonlinear least-squares regression program ava between 0.5 and 4 min thereafter. The data were fit to Eq. 1 in the text using a Marquardt nonlinear least-squares regression program available from Tektronix (10). The program was given the following constants that were from Tektronix (10). The program was given the following constants
that were determined previously or set experimentally: $k_1 = 2.05 \times 10^9$
 M^{-1} min⁻¹ (determined in a parallel experiment), $k_2 = 0.0045$ min⁻¹,
 $[R]$

how much the radioligand binding wateled assuming would differ if *k₃* and *k₄* were different. The *dotted lines* show the binding predicted assuming that the *K₁* was the same, but that the values of both *k₃* a To demonstrate the sensitivity of the technique, we also have shown
how much the radioligand binding would differ if k_3 and k_4 were
different. The *dotted lines* show the binding predicted assuming that
the K_I was From much the radioligand binding would differ if k_3 and k_4 were indifferent. The *dotted lines* show the binding predicted assuming that the K_I was the same, but that the values of both k_3 and k_4 were varie the K_f was the same, but that the values of both k_3 and k_4 were varied either a half-order magnitude higher (above) or lower (below) than the values determined by the program. These curves are clearly resolved fro predicted if *k₄* alone were increased *(above)* or lower *(below)* than the values determined by the program. These curves are clearly resolved from the experimental points. The *dashed lines* show the binding predicte from the experimental points. The *dashed thes* show the binding
predicted if k_4 alone were increased (below) or decreased (above) half
an order of magnitude, thus altering the K_I .
for each. These simulations used a

an order of magnitude, thus altering the K_t .

for each. These simulations used a variety of kinetic a constants, and the slopes (calculated at the IC_{50}) were palways between 1.0 and 1.3. It is noteworthy that the sig ally see the simulations used a variety of kinetic constants, and the slopes (calculated at the IC_{50}) were palways between 1.0 and 1.3. It is noteworthy that the signe-equilibrium slope factor was never less than 1 for for each. These simulations used a variety of kinetic constants, and the slopes (calculated at the IC_{50}) were always between 1.0 and 1.3. It is noteworthy that the gre-equilibrium slope factor was never less than 1 for for each. These simulations used a variety of kinetic an constants, and the slopes (calculated at the IC_{50}) were $PC_$ always between 1.0 and 1.3. It is noteworthy that the sit pre-equilibrium slope factor was never less constants, and the slop
always between 1.0 and
pre-equilibrium slope factories that at equilibriu
also be seen in Fig. 2.
presenting and *x* presenting and *x* presenting and *x* present pre-equilibrium slope factor was never less than
curves that at equilibrium have a slope of 1.0. Thi
also be seen in Fig. 2.
DETERMINING THE K_l FROM KINETIC DATA
Fquilibrium competitive binding curves are often

rves that at equilibrium have a slope of 1.0. This can
so be seen in Fig. 2.
TERMINING THE K_l FROM KINETIC DATA in
Equilibrium competitive binding curves are often used co
determine the dissociation constant (K_l) of a also be seen in Fig. 2.
DETERMINING THE K_l FROM KINETIC DATA
Equilibrium competitive binding curves are often used
to determine the dissociation constant (K_l) of a receptor
for an unlabeled ligand. As shown above, seve DETERMINING THE K_l FROM KINETIC DATA
Equilibrium competitive binding curves are often used
to determine the dissociation constant (K_l) of a receptor
for an unlabeled ligand. As shown above, several hours
may elapse bef DETERMINING THE R_I FROM KINETIC DATA
Equilibrium competitive binding curves are often us
to determine the dissociation constant (K_I) of a recept
for an unlabeled ligand. As shown above, several hou
may elapse before eq Equilibrium competitive binding curves are often used
to determine the dissociation constant (K_I) of a receptor
for an unlabeled ligand. As shown above, several hours
may elapse before equilibrium is achieved in some rec for an unlabeled ligand. As shown above, several hours order to attain equilibrium. The analyses of this paper
may elapse before equilibrium is achieved in some recep-
tor systems. During these hours other unavoidable even for an unlabeled ligand. As shown above, several hours compared and some property may elapse before equilibrium is achieved in some receptors when they cover that may affect the results. For example, the thigand or recepto may elapse before equilibrium is achieved in some receptor systems. During these hours other unavoidable events
may occur that may affect the results. For example, the
ligand or receptors may degrade, target cells may die, tor systems. During these hours other unavoidable events W
may occur that may affect the results. For example, the the
ligand or receptors may degrade, target cells may die, or
extend to determine the compositions it woul may occur that may affect the results. For example, the tigand or receptors may degrade, target cells may die, or the composition of the incubation mixture may change. In these situations it would be desirable to determin ligand or receptors may degrade, target cells may die, or
the composition of the incubation mixture may change.
In these situations it would be desirable to determine the
 K_l in a shorter period of time. Equation 1 makes In these situations it would be desirable to determine the to d K_l in a shorter period of time. Equation 1 makes this is the possible. The kinetics of radioligand binding in the pres-
ence of a competitor can be measure

are readily determined in standard experiments and the are readily determined in standard experiments and the
concentrations of radioligand, competitor, and receptor
are set by the experimenter. Any general-purpose curveare readily determined in standard experiments and t
concentrations of radioligand, competitor, and recept
are set by the experimenter. Any general-purpose curv
fitting algorithm can therefore be used to fit Eq. 1 to t are readily determined in standard experiments and the concentrations of radioligand, competitor, and receptor are set by the experimenter. Any general-purpose curve-
fitting algorithm can therefore be used to fit Eq. 1 t concentrations of radio
are set by the experiment
fitting algorithm can the
experimental data and
gether yield K_I (k_4/k_3).
In Fig. 6 we illustrate Exercise the experimenter. Any general-purpose curve-
ting algorithm can therefore be used to fit Eq. 1 to the
perimental data and determine k_3 and k_4 , which to-
ther yield K_I (k_4/k_3).
In Fig. 6 we illustrate t

fitting algorithm can therefore be used to fit Eq. 1 to the experimental data and determine k_3 and k_4 , which together yield K_I (k_4/k_3).
In Fig. 6 we illustrate the feasibility of this approach for determining gether yield K_I (k_4/k_3).
In Fig. 6 we illustrate the feasibility of this approach
for determining K_I . Here we have determined the K_I of
beta-adrenergic receptors on S49 lymphoma cells for (-)-
propranolol in a In Fig. 6 we illustrate the feasibility of this approach
for determining K_l . Here we have determined the K_l of
beta-adrenergic receptors on S49 lymphoma cells for $(-)$ -
propranolol in a 4-min experiment. The result for determining K_l . Here we have determined the K_l of *beta*-adrenergic receptors on S49 lymphoma cells for $(-)$ -
propranolol in a 4-min experiment. The result (0.3 nM) is similar to that determined in conventiona propranolol in a 4-min experiment. The result (0.3 nM)
is similar to that determined in conventional equilibrium
competitive binding experiments lasting 2 hr (0.2 nM)
ref. 5). Moreover, the kinetic analysis yielde is similar to that determined in conventional equilibric
competitive binding experiments lasting 2 hr (0.2 r
ref. 5). Moreover, the kinetic analysis yielded values
 k_3 (3.1 \pm 0.5 × 10⁹ min⁻¹ M⁻¹) and k_4 (1.0 ments. k_3 (3.1 \pm 0.5 \times 10⁹ min⁻¹ M⁻¹) and k_4 (1.0 \pm 0.26 min⁻¹)
that can not be determined from equilibrium experi-
ments.
DISCUSSION
The equations and simulations were based on a simple
molecular model in

from Tektronix (10). The program was given the following constants simultaneously to a single receptor binding site; (d) only
that were determined previously or set experimentally: $k_1 = 2.05 \times 10^9$ a small fraction of t ments.
DISCUSSION
The equations and simulations were based on a sim
molecular model incorporating the following assum
tions: (a) a single class of noninteracting receptor DISCUSSION
The equations and simulations were based on a simple
molecular model incorporating the following assump-
tions: (a) a single class of noninteracting receptors is
present that binds the radioligand and competitor presents and simulations were based on a simple
molecular model incorporating the following assump-
tions: (a) a single class of noninteracting receptors is
present that binds the radioligand and competitor re-
versibly; (The equations and simulations were based on a simple
molecular model incorporating the following assump-
tions: (a) a single class of noninteracting receptors is
present that binds the radioligand and competitor re-
versib molecular model incorporating the following assumptions: (a) a single class of noninteracting receptors is
present that binds the radioligand and competitor re-
versibly; (b) these binding reactions follows the law of
mass present that binds the radioligand and competitor reversibly; (b) these binding reactions follows the law of mass action; (c) radioligand and competitor cannot bind to receptors (zone A); (e) radioligand and competitor are versibly; (b) these binding reactions follows the law of
mass action; (c) radioligand and competitor cannot bind
simultaneously to a single receptor binding site; (d) only
a small fraction of the radioligand and competitor mass action; (c) radioligand and competitor cannot bind
simultaneously to a single receptor binding site; (d) only
a small fraction of the radioligand and competitor binds
to receptors (zone A); (e) radioligand and competi simultaneously to a single receptor binding site; (d) only
a small fraction of the radioligand and competitor binds
to receptors (zone A); (e) radioligand and competitor are
simultaneously exposed to the receptors; and (f) a small fraction of the radioligand and competitor binds
to receptors (zone A); (e) radioligand and competitor are
simultaneously exposed to the receptors; and (f) the
properties of all free receptors are identical whether to receptors (zone A); (e) radioligand and competitor are
simultaneously exposed to the receptors; and (f) the
properties of all free receptors are identical whether or
not they once bound ligand or competitor. This is a
s properties of all free receptors are identical whether or
not they once bound ligand or competitor. This is a
simple model, and a more complex model may be required
in some experimental situations. Nevertheless, the model
 not they once bound ligand or competitor. This is a not they once bound ligand or competitor. This is
simple model, and a more complex model may be require
in some experimental situations. Nevertheless, the mode
of simple competitive interactions incorporating thes
assumpti simple model, and a more complex model may be requi
in some experimental situations. Nevertheless, the mo
of simple competitive interactions incorporating th
assumptions is commonly accepted as the basis of st
dard methods ments. simple competitive interactions incorporating thes
sumptions is commonly accepted as the basis of stan
rd methods for analyzing competitive binding experi-
ents.
Our analyses and discussion were based around radi-
igand bi

assumptions is commonly accepted as the basis of standard methods for analyzing competitive binding experiments.
Our analyses and discussion were based around radioligand binding experiments. The mathematics, however, are dard methods for analyzing competitive binding experiments.

Our analyses and discussion were based around radi-

oligand binding experiments. The mathematics, however,

are identical for any situation in which two ligands ments.

Our analyses and discussion were based around radio

oligand binding experiments. The mathematics, however

are identical for any situation in which two ligand

compete for binding to a single population of recepto Our analyses and discussion were based around radioligand binding experiments. The mathematics, however are identical for any situation in which two ligand compete for binding to a single population of receptors and the bi oligand binding experiments. The mathematics, however,
are identical for any situation in which two ligands
compete for binding to a single population of receptors,
and the binding of one of those ligands is measured.
Port are identical for any situation in which two ligano
compete for binding to a single population of receptor
and the binding of one of those ligands is measure
Portions of our discussion may therefore apply to othe
situation compete for binding to a single population of rece
and the binding of one of those ligands is mea
Portions of our discussion may therefore apply to
situations such as radioimmunoassays, fluorescent
ing assays, and competit and the bind
Portions of o
situations suc
ing assays, an
ical responses
The theore Portions of our discussion may therefore apply to other situations such as radioimmunoassays, fluorescent binding assays, and competitive antagonism of pharmacological responses.
The theoretical analyses described in this

1. When establishing an experimental protocol for It is assays, and competitive antagonism of pharmacolog-

In the sponses.

The theoretical analyses described in this paper apply

four experimental situations:

1. When establishing an experimental protocol for

mpetitive ical responses.
The theoretical analyses described in this paper apply
in four experimental situations:
1. When establishing an experimental protocol for
competitive radioligand binding experiments one must
decide how long The theoretical analyses described in this paper apply
in four experimental situations:
1. When establishing an experimental protocol for
competitive radioligand binding experiments one must
decide how long to allow the in in four experimental situations:
1. When establishing an experimental protocol for
competitive radioligand binding experiments one must
decide how long to allow the incubation to proceed in
order to attain equilibrium. The 1. When establishing an experimental protocol for competitive radioligand binding experiments one mudecide how long to allow the incubation to proceed is order to attain equilibrium. The analyses of this pape make it clear decide how long to allow the incubation to proceed in decide how long to allow the incubation to proceed in
order to attain equilibrium. The analyses of this paper
make it clear how to set the duration of the incubation.
When the competitor dissociates from the receptor faste order to attain equilibrium. The analyses of this paper
make it clear how to set the duration of the incubation.
When the competitor dissociates from the receptor faster
than does the radioligand, the time required to atta When the competitor dissociates from the receptor faste
than does the radioligand, the time required to attai
equilibrium is determined by the dissociation rate of th
radioligand. Thus the time required for the radioligan
 than does the radioligand, the time required to atts equilibrium is determined by the dissociation rate of t radioligand. Thus the time required for the radioligato dissociate from receptors in an "off-rate" experime is th radioligand. Thus the time required for the radioligand
to dissociate from receptors in an "off-rate" experiment
is the same as the time required for a competitive exper-
iment to reach equilibrium. Often investigators use radioligand. Thus the time required for the radioligand
to dissociate from receptors in an "off-rate" experiment
is the same as the time required for a competitive exper-
iment to reach equilibrium. Often investigators use to dissociate from receptors in an "off-rate" experiment
is the same as the time required for a competitive exper-
iment to reach equilibrium. Often investigators use an
"on-rate" experiment to determine the time required. is the same as the time required for a competitive experiment to reach equilibrium. Often investigators use an "on-rate" experiment to determine the time required.
This will yield the correct result only if a very low conc

rate" is K_A [= $k_1[L] + k_2$], which approximates k_2 only APPI
when $[L] \ll K_D$). As noted above and in the legend to
Fig. 4, an acceptable approximation of the IC₅₀ can be Fig. 4, an acceptable approximates k_2 only API
when $[L] \ll K_D$). As noted above and in the legend to
Fig. 4, an acceptable approximation of the IC₅₀ can be
attained in less than half the time required to reach rate" is K_A $[= k_1[L] + k_2]$, which approximates k_2 only API
when $[L] \ll K_D$). As noted above and in the legend to
Fig. 4, an acceptable approximation of the IC₅₀ can be
attained in less than half the time required to equilibrium. when $[L] \ll K_D$). As noted above and in the legend to

Fig. 4, an acceptable approximation of the IC₅₀ can be

attained in less than half the time required to reach

acquilibrium.

2. Several authors have demonstrated tha

Fig. 4, an acceptable approximation of the IC_{50} can be

attained in less than half the time required to reach I

equilibrium.

2. Several authors have demonstrated that it can take

longer for radioligand binding to re equilibrium.

2. Several authors have demonstrated that it can take

longer for radioligand binding to reach equilibrium in the

presence of a competing drug than in its absence, and we

have now quantitated the relationsh 2. Several authors have demonstrated that it can take training longer for radioligand binding to reach equilibrium in the presence of a competing drug than in its absence, and we have now quantitated the relationship. Thus presence of a competing drug than in its absence, and we have now quantitated the relationship. Thus, if an experimental protocol is based on the minimal time required for the binding of the radioligand alone to reach equi have now quantitated the relationship. Thus, if an experimental protocol is based on the minimal time required for the binding of the radioligand alone to reach equilibrium, competitive binding experiments will be terminat quired for the binding of the radioligand alone to reach equilibrium, competitive binding experiments will be terminated before equilibrium is established. However, this fact is not well known, and some published competit equilibrium, competitive binding experiments will be ter-
minated before equilibrium is established. However, this
fact is not well known, and some published competitive
binding curves may have been obtained under non-equi fact is not well known, and some published competitive
binding curves may have been obtained under non-equi-
librium conditions. The relationship derived in this paper
allow one to determine whether the apparent K_I valu binding curves may have been obtained under
librium conditions. The relationship derived in
allow one to determine whether the apparent
determined by these non-equilibrium curves
be over- or underestimates of the true K_I From conditions. The relationship derived in this paper
ow one to determine whether the apparent K_I values
termined by these non-equilibrium curves are likely to
 K_I
over- or underestimates of the true K_I .
3. Recent

allow one to determine whether the apparent K_I values ven
determined by these non-equilibrium curves are likely to K_S
be over- or underestimates of the true K_I . (2)
3. Recent experiments by ourselves and others have determined by these non-equilibrium curves are likely to
be over- or underestimates of the true K_l .
3. Recent experiments by ourselves and others have
demonstrated that *beta*-adrenergic agonists appear to
bind transien be over- or underestimates of the true K_I .
3. Recent experiments by ourselves and others high affinity to *beta*-adrenergic agonists appear
bind transiently to *beta*-adrenergic receptors on int
cells with a high affini 3. Recent experiments by ourselves and others have
demonstrated that *beta*-adrenergic agonists appear to 2
bind transiently to *beta*-adrenergic receptors on intact
cells with a high affinity, and that this binding "dese demonstrated that *beta*-adrenergic agonists appear to bind transiently to *beta*-adrenergic receptors on intacells with a high affinity, and that this binding "deser sitizes" the receptors so as to decrease their later af cells with a high affinity, and that this binding "desensitizes" the receptors so as to decrease their later affinity for the agonists $(5-7)$. This transient high-affinity binding is observed during the first few minutes cells with a high affinity, and that this binding "desensitizes" the receptors so as to decrease their later affinity and for the agonists $(5-7)$. This transient high-affinity bind-
ing is observed during the first few m for the agonists (5–7). This transient high-affinity bind-
ing is observed during the first few minutes of the com-
petition between agonist and ligand, long before equilib-
for
inum is reached. At equilibrium the agonist action. between agonist and ligand, long before equilib-
petition between agonist and ligand, long before equilib-
rium is reached. At equilibrium the agonist appears to $[L]$
compete for radioligand binding with a low aff rium is reached. At equilibrium the agonist appears to compete for radioligand binding with a low affinity and in a manner essentially consistent with the law of mass action. The anomolous behavior of agonist binding is ob compete for radioligand binding with a low affinity and
in a manner essentially consistent with the law of mass
action. The anomolous behavior of agonist binding is
observed only in kinetic experiments. A full theoretical
 in a manner essentially consistent with the law of mass
action. The anomolous behavior of agonist binding is
observed only in kinetic experiments. A full theoretical
analysis of this transient high-affinity binding has not action. The anomolous behavior of agonist binding is
observed only in kinetic experiments. A full theoretical
analysis of this transient high-affinity binding has not
yet been published. As a first step in analyzing such d observed only in kinetic experiments. A full theoretical panalysis of this transient high-affinity binding has not cyet been published. As a first step in analyzing such data, wit is necessary to demonstrate that the data analysis of this transient high-affinity binding has not yet been published. As a first step in analyzing such data, it is necessary to demonstrate that the data are not compatible with a simple model of competitive bindin it is necessary to demonstrate that the data are not I.
compatible with a simple model of competitive binding itive
based on the law of mass action. The best way to dem-
part
onstrate that the early competition data canno based on the law of mass action. The best way to dem-
onstrate that the early competition data cannot be ex-
plained by the law of mass action is to compare directly
low a
the observed data with the theoretical prediction plained by the law of mass action is to compare directly lothe observed data with the theoretical predictions (5). In addition, the generalizations derived in this paper allow K_i one to be certain immediately that an ea the observed data with the theoretical predictions (5). In addition, the generalizations derived in this paper allow K one to be certain immediately that an early competition curve is inconsistent with the law of mass a addition, the generalizations derived in this paper allow
one to be certain immediately that an early competition
curve is inconsistent with the law of mass action if the
early IC_{50} is less than equilibrium K_I , or if curve is inconsistent with the law of mass action if the early IC_{50} is less than equilibrium K_I , or if the early slope factor is less than 1.0 (and the equilibrium slope factor is equal to 1).
4. It may not be feasib

factor is less than 1.0 (and the equilibrium slope factor is equal to 1).
4. It may not be feasible to allow an incubation to proceed long enough for equilibrium to be established if, for example, the ligand or receptor d for example, the ligand or receptor degrades, or the target is equal to 1).
4. It may not be feasible to allow an incubation t
proceed long enough for equilibrium to be established if
or example, the ligand or receptor degrades, or the targe
cells die. Under such circumstances, the 4. It may not be feasible to allow an incubation to proceed long enough for equilibrium to be established if, for example, the ligand or receptor degrades, or the target cells die. Under such circumstances, the experimente proceed long enough for equilibrium to be established if, only for example, the ligand or receptor degrades, or the target cells die. Under such circumstances, the experimenter may be forced to terminate the binding incub for example, the ligand or receptor degrades, or the target cells die. Under such circumstances, the experimenter may be forced to terminate the binding incubations before equilibrium is established. We have shown how to cells die. Under such circumstances, the experimenter
may be forced to terminate the binding incubations be-
fore equilibrium is established. We have shown how to
determine the K_l using an experimental protocol that
can may be forced to terminate the binding incubations b
fore equilibrium is established. We have shown how
determine the K_I using an experimental protocol th
can be completed long before equilibrium is reache
Moreover, thi fore equilibrium is established. We have shown how to determine the K_I using an experimental protocol that can be completed long before equilibrium is reached. Moreover, this technique uniquely allows one to determine t can be completed long before equilibrium is reached.
Moreover, this technique uniquely allows one to determine the individual values of the association and dissociation rate constants of an unlabeled compound that determi

ACKNOWLEDGMENTS

thank Vincent Dionne, Leslie Morrow, and Paul Insel for helpful
We thank Vincent Dionne, Leslie Morrow, and Paul Insel for helpful
nments, Sandra Dutky for preparing the manuscript, and Arlene determine the A_J.
ACKNOWLEDGMENTS
We thank Vincent Dionne, Leslie Morrow, and Paul Insel for helpful
comments, Sandra Dutky for preparing the manuscript, and Arlene
Koachman for performing the experiment shown in Fig. 6. ACKNOWLEDGMENTS
We thank Vincent Dionne, Leslie Morrow, and Paul Insel f
comments, Sandra Dutky for preparing the manuscript, an
Koachman for performing the experiment shown in Fig. 6.

FITICS OF COMPETITIVE RADIOLIGAND BINDING

PENDIX: MATHEMATICAL DETAILS

Solution to the Differential Equations

Defining y as [RL] and x as [RI], and setting both

ual to zero initially, the differential equations were APPENDIX: MATHEMATICAL DETAILS
1. Solution to the Differential Equations
Defining y as $[RL]$ and x as $[RI]$, and setting both
equal to zero initially, the differential equations were
transformed by the method of Lapla 1. Solution to the Differential Equations

Defining y as [RL] and x as [RI], and setting

equal to zero initially, the differential equations

transformed by the method of Laplace:
 $s\hat{y} = Nk_1[L]/s - k_1[L]\hat{x} - k_1[L]\hat{y} - k_2\$

$$
s\hat{y} = Nk_1[L]/s - k_1[L]\hat{x} - k_1[L]\hat{y} - k_2\hat{y}
$$

$$
s\hat{x} = Nk_3[I]/s - k_3[I]\hat{x} - k_3[I]\hat{y} - k_4\hat{y}
$$

Solving the second equation for \hat{x} and inserting into $s\hat{x} = Nk_3[I]/s - k_3[I]\hat{x} - k_3[I]$
Solving the second equation for \hat{x} as
the first yields (after some rearranging)
 $NK_1[L]$

$$
\hat{y} = \frac{NK_1[L]}{(s + K_F)(s + K_S)} + \frac{NK_1K_4[L]}{s(s + K_F)(s + K_S)}
$$

Back-transforming yields Eq. 1 in the text. The inter-
vening algebraic steps make use of the facts that K_F + $\hat{y} = \frac{NK_1[L]}{(s + K_F)(s + K_S)} + \frac{NK_1K_4[L]}{s(s + K_F)(s + K_S)}$
Back-transforming yields Eq. 1 in the text. The inter-
vening algebraic steps make use of the facts that $K_F + K_S = K_A + K_B$ and $K_F K_S = K_A K_B - k_1 k_3[L][I]$. Arányi
(2) has publish Back-transforming yields Eq. 1 in t
vening algebraic steps make use of $K_S = K_A + K_B$ and $K_F K_S = K_A K_B$ -
(2) has published a similar derivation. Back-transforming yields Eq. 1 in the text. The inter-
vening algebraic steps make use of the facts that $K_F + K_S = K_A + K_B$ and $K_F K_S = K_A K_B - k_1 k_3[L][I]$. Arányi
(2) has published a similar derivation.
2. How Long Does It Take fo *Ing algebraic steps make use of the facts that* K_F
 $= K_A + K_B$ and $K_F K_S = K_A K_B - k_1 k_3[L][I]$. Arai

has published a similar derivation.
 Incubation to Reach Equilibrium at the IC₅₀?

At the IC₅₀, [*I*] = $(k_4/k_3)(1 + [L]/$

(2) has published a similar derivation.

2. *How Long Does It Take for a Competitive Binding*
 Incubation to Reach Equilibrium at the IC_{50} ?

At the IC_{50} , $[I] = (k_4/k_3)(1 + [L]/K_D)$. In Eq. 1, [*I*]

and k_3 only appe

rate constant, $k_3[I]$. Thus, for a known K_D , a fixed [L] *rate constant, iii* $\frac{1}{2}$. *How Long Does It Take for a Competitive Binaing Incubation to Reach Equilibrium at the* IC_{50} *?*
At the IC_{50} , $[I] = (k_4/k_3)(1 + [L]/K_D)$. In Eq. 1, $[I]$ and k_3 only appear as a product, t *Incubation to Reach Equitorium at the* IC_{50} :
At the IC_{50} , $[I] = (k_4/k_3)(1 + [L]/K_D)$. In Eq. 1, $[I]$
and k_3 only appear as a product, the pseudo-first-order
rate constant, $k_3[I]$. Thus, for a known K_D , a fixed $[L]$ and k_3 only appear as a product, the pseudo-first-order
rate constant, $k_3[I]$. Thus, for a known K_D , a fixed [*L*]
and [*I*] = IC₅₀, $k_3[I]$ is a simple function of k_4 . Similarly,
for a radioligand of known K_D for a radioligand of known K_D and fixed concentration [*L*], the pseudo-first-order association rate constant, $k_1[L]$, is a simple function of k_2 . Therefore the kinetics of binding may be described in terms of k_2 r a radioligand of known K_D and fixed concentration
], the pseudo-first-order association rate constant,
[*L*], is a simple function of k_2 . Therefore the kinetics
binding may be described in terms of k_2 and k_4

[*L*], the pseudo-first-order association rate constant, $k_1[L]$, is a simple function of k_2 . Therefore the kinetics of binding may be described in terms of k_2 and k_4 . The time required for equilibrium to be achi which $k_2 \gg k_4$. The time required for equilibrium to be achieved
rds heavily on the relative values of k_2 and k_4 .
msider first the case in which $k_2 \ll k_4$, then the case
ich $k_2 \gg k_4$.
I. $k_2 \ll k_4$. The amount of time required

pends heavily on the relative values of k_2 and k_4 . We
consider first the case in which $k_2 \ll k_4$, then the case in
which $k_2 \gg k_4$.
I. $k_2 \ll k_4$. The amount of time required for a compet-
itive binding incubati consider first the case in which $k_2 \ll k_4$, then the case in
which $k_2 \gg k_4$.
I. $k_2 \ll k_4$. The amount of time required for a compet-
itive binding incubation to reach equilibrium depends, in
part, on the radioligand c which $k_2 \gg k_4$.

I. $k_2 \ll k_4$. The amount of time required for a competitive binding incubation to reach equilibrium depends, in part, on the radioligand concentration. We consider the two extremes, when the radioligan itive binding incubation to reach equilibrium depends, in part, on the radioligand concentration. We consider the two extremes, when the radioligand concentration is very low and when it is very high.
(a) Very low radioli $part, on the radioligand concentration. We consider the$

(a) Very low radioligand concentration: here $[L] \ll \frac{1}{2}$

$$
[I] = IC_{50} = K_I([L]/K_D + 1) \simeq K_I
$$

early IC_{50} is less than equilibrium K_I , or if the early slope
factor is less than 1.0 (and the equilibrium slope factor
is equal to 1).
4. It may not be feasible to allow an incubation to
proceed long enough for equi (a) Very low radioligand concentration: here $[L] \ll$
 $[I] = IC_{50} = K_I([L]/K_D + 1) \approx K_I$

Because $k_3[I] (= k_4)$ is much larger than $k_1[L]$, the mpetitor will bind rapidly and the radioligand binding K_D :
 $[I] = IC_{50} = K_I([L]/K_D + 1) \approx K_I$

Because $k_3[I] (= k_4)$ is much larger than $k_1[L]$, the

competitor will bind rapidly and the radioligand binding

will take longer. Thus the competitor will always be $[I] = IC_{50} = K_I([L]/K_D + 1) \approx K_I$
Because $k_3[I] (= k_4)$ is much larger than $k_1[L]$, the
competitor will bind rapidly and the radioligand binding
will take longer. Thus the competitor will always be
nearly at equilibrium with fre Because $k_3[I] (= k_4)$ is much larger than $k_1[L]$, the
competitor will bind rapidly and the radioligand binding
will take longer. Thus the competitor will always be
nearly at equilibrium with free receptors, and we need
on Because $k_3[I] (= k_4)$ is much larger the competitor will bind rapidly and the radioli
will take longer. Thus the competitor will nearly at equilibrium with free receptors,
only consider the binding of the radioligand only consider the binding of the radioligand:

$$
d[RL]/dt = k_1[L][R] - k_2[RL]
$$

[R] = (N - [RL])/2

d[*RL*]/*dt* = $k_1[L][R] - k_2[RL]$
 $[R] = (N - [RL])/2$

(half of the receptors not occupied by radioligand will be bound to competitor because the competitor is present $d[KL]/dt = k_1[L][R] - k_2[KL]$
 $[R] = (N - [RL])/2$

(half of the receptors not occupied by radioligand will be

bound to competitor because the competitor is present

at its K_l and equilibrates rapidly). $[R] = (N - [RL])/2$
(half of the receptors not occupied bound to competitor because the
at its K_l and equilibrates rapidly).
Solving for $[RL]$: $[R] = \sqrt{R}$
(half of the receptors
bound to competitor
at its K_I and equilibright solving for $[RL]$:

or
$$
[RL]
$$
:
\n $[RL] = N/2(1 - \exp(-k_1[L] - k_2t))$
\n $\approx N/2(1 - \exp(-k_2t))$

 $[RL] = N/2(1 - \exp(-k_1[L] - k_2t))$
 $\approx N/2(1 - \exp(-k_2t))$

The half-life is 0.69/k₂; equilibrium is achieved at 3.5/
 k_2 . This is the same amount of time required for the $[RL] = N/2(1 - \exp(-k_1[L] - k_2t))$
 $\approx N/2(1 - \exp(-k_2t))$

The half-life is 0.69/k₂; equilibrium is achieved at 3.5/
 k_2 . This is the same amount of time required for the

B MOTULSKY AND MAHAN
binding of radioligand alone, when it is present at very su
low concentration. $=$
(b) Very high radioligand concentration: here $[L] \gg ex$

MOTULSKY AND MAHAN

binding of radioligand alone, when it is present at very subst

low concentration. $= k$

(b) Very high radioligand concentration: here $[L] \gg \exp(-k)$
 K_D : *[I]* ⁼ IC50 ⁼ *K,([L]/K +* 1)

$$
[I] = IC_{50} = K_I([L]/K_D + 1)
$$

(b) Very high radioligand concentration: here $[L] \gg K_D$:
 $[I] = IC_{50} = K_I([L]/K_D + 1)$

The pseudo-first-order on-rate of the radioligand, $k_1[L]$,

can be expressed as $k_2[L]/K_D$). Similarly, the pseudo- $K_D:$
 $[I] = IC_{50} = K_I([L]/K_D + 1)$

The pseudo-first-order on-rate of the radioligand, k_1

can be expressed as $k_2[L]/K_D$). Similarly, the pseu

first-order on-rate of the competitor, $k_3[I]$, can be $[I] = IC_{50} = K_I([L]/K_D + 1)$
The pseudo-first-order on-rate of the radioligand, $k_1[L]$,
can be expressed as $k_2[L]/K_D$). Similarly, the pseudo-
first-order on-rate of the competitor, $k_3[I]$, can be ex-
pressed as $k_4([L]/K_D + 1)$ The pseudo-first-order on-rate of the radioligand, $k_1[L]$,
can be expressed as $k_2[L]/K_D$). Similarly, the pseudo-
first-order on-rate of the competitor, $k_3[I]$, can be ex-
pressed as $k_4([L]/K_D + 1)$. Given that $k_4 \gg k_2$ The pseudo-first-order on-rate of the radioligand, $k_1[L]$,
can be expressed as $k_2[L]/K_D$. Similarly, the pseudo-
first-order on-rate of the competitor, $k_3[I]$, can be ex-
pressed as $k_4([L]/K_D + 1)$. Given that $k_4 \gg k_2$ can be expressed as $k_2[L]/K_D$. Similarly, the pseudo-
first-order on-rate of the competitor, $k_3[I]$, can be ex-
pressed as $k_4([L]/K_D + 1)$. Given that $k_4 \gg k_2$, the
competitor will therefore bind to the receptor much fa first-order on-rate of the competitor, $k_3[I]$, can be expressed as $k_4([L]/K_D + 1)$. Given that $k_4 \gg k_2$, the receptor will therefore bind to the receptor much faster p than will the radioligand. Thus again the competito pressed as $k_4([L]/K_D + 1)$. Given that $k_4 \gg k_2$, the receptors. Another approach is to analyze the time decompetitor will therefore bind to the receptor much faster pendence of Eq. 1. The binding described by that equati than will the radioligand. Thus again the competitor will rapidly than the radioligand will. Equilibrium will be e stablished as the radioligand reaches equilibrium with

$$
d[RL]/dt = k_1[L][R] - k_2[RL]
$$

$$
[R] = N - [RL] - [RI]
$$

 $B_1 = N - [RL] - [RL]$
Because the competitor will always be virtually at
when is $K_S > k_4$? Expanding
willibrium with the free receptors,
 $[RI] = [R][I]/K$.
Therefore, $-K_A K_B + k_1[L]k_3[I]$ $d[RL]/dt = k_1[L][R]$
 $[R] = N - [RL] - [R]$

Because the competitor will a

equilibrium with the free receptors
 $[RL] = [R][L]/R$ Because the competitor wi
equilibrium with the free recep
 $[RI] = [R]$
From the definition of IC₅₀,
 $[II/K] = [I][K_R]$

$$
[RI] = [R][I]/K_i
$$

$$
[RI] = [R][I]/K_I
$$

inition of IC₅₀,

$$
[I]/K_I = [L]/K_D + 1 \simeq [L]/K_D
$$

$$
\Rightarrow K_{\sim}
$$
 Substituting

(because $[L] \gg K_D$). Substituting

$$
[R] = [RI]K_I/I = [RI]K_D/[L],
$$

\n
$$
[R] = (N - [RL])K_D/[L]
$$

\n
$$
d[RL]/dt = k_2N - 2k_2[RL]
$$

After integrating,

$$
[RL] = N/2(1 - \exp(-2k_2t))
$$

 $a[RL]/dt = k_2N - 2k_2[RL]$

ter integrating,
 $[RL] = N/2(1 - \exp(-2k_2t))$

Therefore, the half-life is 0.35/k₂ and equilibrium is the

ached at 1.75/k₂ min. Thus, by increasing the radioli-After integrating,
 $[RL] = N/2(1 - \exp(-2k_2 t))$

Therefore, the half-life is $0.35/k_2$ and equilibrium

reached at $1.75/k_2$ min. Thus, by increasing the radioly

gand concentration, the time required to reach equil $[RL] = N/2(1 - \exp(-2k_2 t))$
Therefore, the half-life is 0.35/ k_2 and equilibrium
reached at 1.75/ k_2 min. Thus, by increasing the radi
gand concentration, the time required to reach equi
rium is halved. Why cannot the react Therefore, the half-life is $0.35/k_2$ and equilibrium is
reached at $1.75/k_2$ min. Thus, by increasing the radioli-
gand concentration, the time required to reach equilib-
rium is halved. Why cannot the reaction be "pushe Therefore, the half-life is $0.35/k_2$ and equilibrium is
reached at $1.75/k_2$ min. Thus, by increasing the radioli-
gand concentration, the time required to reach equilib-
rium is halved. Why cannot the reaction be "pushe reached at 1.75/ k_2 min. Thus, by increasing the radioli-
gand concentration, the time required to reach equilib-
rium is halved. Why cannot the reaction be "pushed"
faster? The rate at which the radioligand binds is pr gand concentration, the time required to reach equilibrium is halved. Why cannot the reaction be "pushed" faster? The rate at which the radioligand binds is proportional to both its concentration and the number of free rec faster? The rate at which the radioligand binds is pro-
portional to both its concentration and the number of
free receptors. When the radioligand concentration is
increased, the concentration of competitor must also be
i faster? The rate at which the radioligand binds is pro-
portional to both its concentration and the number of
free receptors. When the radioligand concentration is
increased, the concentration of competitor must also be
i portional to both its concentration and the number of
free receptors. When the radioligand concentration is
increased, the concentration of competitor must also be
increased (so that it remains as its IC_{50}), and the nu free receptors. When the radioligand concentration is
increased, the concentration of competitor must also be
increased (so that it remains as its IC_{50}), and the number
of free receptors decreases. The product of radio increased, the concentration of competitor must also be
increased (so that it remains as its IC_{50}), and the number
of free receptors decreases. The product of radioligand
concentration times free receptor concentration radioligand. Free receptors decreases. The product of radioligand
ncentration times free receptor concentration can at
st be doubled by increasing the concentration of the
dioligand.
II. $k_2 \gg k_4$. In this case the competitor will bi concentration times free receptor concentration can at
best be doubled by increasing the concentration of the
radioligand.
 $II. k_2 \gg k_4$. In this case the competitor will bind much
more slowly than radioligand. We can ther

more slowly than radioligand. We can therefore consider radioligand.
II. $k_2 \gg k_4$. In this case the competitor will bind much
more slowly than radioligand. We can therefore consider
the free receptors and radioligand always to be at equi-
librium. The time required for the e II. $k_2 \gg k_4$. In this case the competitor will bind much
more slowly than radioligand. We can therefore consider
the free receptors and radioligand always to be at equi-
librium. The time required for the entire competi more slowly than radioligand. We can therefore consider
the free receptors and radioligand always to be at equi-
librium. The time required for the entire competitive
binding incubation to reach equilibrium is therefore t the free receptors and radioligand always to be at equilibrium. The time required for the entire competitive binding incubation to reach equilibrium is therefore the time required for the competitor to reach equilibrium w binding incubation to reach equilbrium is therefore the time required for the competitor to reach equilibrium with the free receptors. The math is similar to that above:
 $d[RI]/dt = k_3[I][R] - k_4[RI]$

$$
d[RI]/dt = k_3[I][R] - k_4[R]
$$

[R] = N - [RI] - [RL]
[RL] = [R][L]/K_D

substituting, $[R] = (N - [RI]/(1 + [L]/K_D)$ and $d[RI]/dt$
= $k_4N - 2k_4[RI]$. Integrating, $[RI] = N/2(1 - exp(-2k_4t))$. bstituting, $[R] = (N - [RI]/(1 + [L]/K_D)$ and $d[RI]/dt$
 $k_4N - 2k_4[RI]$. Integrating, $[RI] = N/2(1 - p(-2k_4t))$.

Equilibrium is therefore reached in $3.5/2k_4 = 1.75/k_4$

in. Note that in this case the concentration of radiolisubstituting, $[R] = (N - [RI]/(1 + [L]/K_D)$ and $d[RI]$
= $k_4N - 2k_4[RI]$. Integrating, $[RI] = N/2(1$
exp(-2 $k_4 t$)).
Equilibrium is therefore reached in 3.5/2 $k_4 = 1.75$
min. Note that in this case the concentration of radio
gand is

= $k_4N - 2k_4[RI]$. Integrating, $[RI] = N/2(1 - \exp(-2k_4 t))$.

Equilibrium is therefore reached in $3.5/2k_4 = 1.75/k_4$

min. Note that in this case the concentration of radioli-

gand is irrelevant.

Determining the duration of

Equilibrium is therefore reached in $3.5/2k_4 = 1.75/k_4$
min. Note that in this case the concentration of radioli-
gand is irrelevant.
Determining the duration of time required to reach
equilibrium depended largely on cons min. Note that in this case the concentration of radioli-
gand is irrelevant.
Determining the duration of time required to reach
equilibrium depended largely on considering the relative
rates at which radioligand and compe gand is irrelevant.
Determining the duration of time required to reach
equilibrium depended largely on considering the relative
rates at which radioligand and competitor bind to the
receptors. Another approach is to analyz Determining the duration of time required to readequilibrium depended largely on considering the relation
rates at which radioligand and competitor bind to the
receptors. Another approach is to analyze the time d
pendence equilibrium depended largely on considering the relative rates at which radioligand and competitor bind to the receptors. Another approach is to analyze the time dependence of Eq. 1. The binding described by that equation rates at which radioligand and competitor bind to the receptors. Another approach is to analyze the time dependence of Eq. 1. The binding described by that equation will reach equilibrium as the slower exponential term in receptors. Another approach is to analyze the time dependence of Eq. 1. The binding described by that equation will reach equilibrium as the slower exponential term involving K_s reaches equilibrium. Evaluating K_s nume pendence of Eq. 1. The binding described by that equation will reach equilibrium as the slower exponential term involving K_S reaches equilibrium. Evaluating K_S numerically with various values for the kinetic constants above. and [L] yielded conclusions identical with those derived when is $K_S > k_4$, k_F , K_S
When is $K_S > k_4$? Expanding K_S and rearranging yields
 $\sqrt{(K_{1} + K_{2})^2 - 4K_{1}K_{2} + 4h_{1}L_{1}h_{2}L_{2} + 2h_{2}L_{1}K_{2} + 4h_{2}L_{2}h_{2} + 4h_{2}L_{2}h_{1}L_{2}h_{2} + 4h_{2}L_{2}h_{2}h_{1}L_{1}h_{2}h_{2}h_{1}h_{2$

When is
$$
K_S > k_4
$$
? Expanding K_S and rearranging yields
\n $\sqrt{(K_A + K_B)^2 - 4K_AK_B + 4k_1[L]k_3[I]} < 2k_4 - (K_A + K_B)$
\nTherefore, $-K_AK_B + k_1[L]k_3[I] > (k_4)^2 - k_4K_A - k_4K_B$.
\nNote that squaring the negative expressions caused the
\nsign of the inequality to change. Simplifying this expres-

$$
\sqrt{(K_A + K_B)^2 - 4K_AK_B + 4k_1[L]k_3[I] < 2k_4 - (K_A + K_B)}
$$
\nTherefore, $-K_A K_B + k_1[L]k_3[I] > (k_4)^2 - k_4K_A - k_4K_B$.\nNote that squaring the negative expressions caused the sign of the inequality to change. Simplifying this expression yields $k_4 < k_2$. Similarly $K_S > k_2$ when $k_4 > k_2$. When is $K_F > k_4$ or $K_F > k_2$? Similar algebra leads to a tautology; therefore, K_F is always greater than k_2 and

a tautology; therefore, K_F is always greater than k_2 and *k4.* In yields $k_4 < k_2$. Similarly $K_S > k_2$ when $k_4 > k_2$.
When is $K_F > k_4$ or $K_F > k_2$? Similar algebra leads to tautology; therefore, K_F is always greater than k_2 and K_F is always greater than k_2 and k_4 ; K_S

between k_2 and k_4 . 4. tautology; therefore, R_F is always greater than k_2 and k_4 .

Thus K_F is always greater than k_2 and k_4 ; K_S is always

between k_2 and k_4 .

4. Proof That the Binding of Radioligand "Overshoots"

Its *If* Its Equilibrium Indian in the Sinding of Radiolignum Value if k_4 *Zequilibrium Value if* $k_4 < k_2$
 Its Equilibrium Value if $k_4 < k_2$
 In Eq. 1 the [RL] is defined by the s

tween k_2 and k_4 .
Proof That the Binding of Radioligand "Overshot
Its Equilibrium Value if $k_4 < k_2$
In Eq. 1 the [*RL*] is defined by the sum of its equi
im value plus two exponential terms. When th 4. Proof That the Binding of Radioligand "Overshoots"
Its Equilibrium Value if $k_4 < k_2$
In Eq. 1 the [RL] is defined by the sum of its equilib-
rium value plus two exponential terms. When these
terms are positive, [RL] w 4. Proof I nat the Binaing of Radioligana Overshoots

Its Equilibrium Value if $k_4 < k_2$

In Eq. 1 the [RL] is defined by the sum of its equilib-

rium value plus two exponential terms. When these

terms are positive, [RL Its Equilibrium value y_{k_4} \leq
In Eq. 1 the [RL] is defined b
rium value plus two exponent
terms are positive, [RL] will value. This will occur when
 $h = K_2$

$$
\frac{k_4-K_F}{K_F}\exp(-K_Ft)-\frac{k_4-K_S}{K_S}\exp(-K_St)>0
$$

value. I has will occur when
 $\frac{k_4 - K_F}{K_F} \exp(-K_F t) - \frac{k_4 - K_S}{K_S} \exp(-K_S t) > 0$

Because K_F is always greater than k_4 , the first term will

always be negative. The second term will make a positive $\frac{k_4 - K_F}{K_F}$ exp($-K_F t$) $-\frac{k_4 - K_S}{K_S}$ exp($-K_S t$) > 0
Because K_F is always greater than k_4 , the first term will
always be negative. The second term will make a positive
contribution when $k_4 < K_S$; this occurs when Exp($-K_F t$) - K_S exp($-K_S t$) > 0
Because K_F is always greater than k_4 , the first term will
always be negative. The second term will make a positive
contribution when $k_4 < K_S$; this occurs when $k_4 < k_2$.
This is a su Because K_F is always greater than k_4 , the first term will always be negative. The second term will make a positive contribution when $k_4 < K_S$; this occurs when $k_4 < k_2$. This is a sufficient condition for the entire Because K_F is always greater than k_4 , the first term will always be negative. The second term will make a positive contribution when $k_4 < K_S$; this occurs when $k_4 < k_2$. This is a sufficient condition for the entire always be negative. The seconorchibution when $k_4 < K_S$;
This is a sufficient condition
positive at long time points
approach zero at these times. contribution when $R_4 < R_5$; this occurs when $R_4 < R_2$.
This is a sufficient condition for the entire sum to be
positive at long time points, because $\exp(-K_F t)$ will
approach zero at these times.
5. What Is the Minimum Ra

is is a surficient condition for the entire sum to be
sitive at long time points, because $exp(-K_F t)$ will
proach zero at these times.
What Is the Minimum Ratio of Binding of Radioligand
in the Presence of Competitor Compa Filive at long time
in Its Abe Minim
in the Presence of Un Its Absence?
As shown in Fig. 31 What Is the Minimum Ratio of Binding of Radioligand
in the Presence of Competitor Compared with Binding
in Its Absence?
As shown in Fig. 3B, the binding ratio dips below its
uilibrium value only if $k_2 < k_4$. This dip is

Equilibrium value of Competitor Compared with Binding
in the Presence of Competitor Compared with Binding
in Its Absence?
As shown in Fig. 3B, the binding ratio dips below its
equilibrium value only if $k_2 < k_4$. This dip in the Presence of Competitor Compared with Binding
in Its Absence?
As shown in Fig. 3B, the binding ratio dips below its
equilibrium value only if $k_2 < k_4$. This dip is most
pronounced when k_3 and k_4 are large, as In the most extreme case, $K_B \gg K_A$. This dip is most
pronounced when k_3 and k_4 are large, as seen in Fig. 4.
In the most extreme case, $K_B \gg K_A$ and $K_S = K_A$ and $K_F = K_B$. We cannot evaluate the binding ratio at time z As shown in Fig. 3B, the binding ratio dips below its
equilibrium value only if $k_2 < k_4$. This dip is most
pronounced when k_3 and k_4 are large, as seen in Fig. 4.
In the most extreme case, $K_B \gg K_A$ and $K_S = K_A$ and equilibrium value only if $k_2 < k_4$. This dip is most
pronounced when k_3 and k_4 are large, as seen in Fig. 4.
In the most extreme case, $K_B \gg K_A$ and $K_S = K_A$ and $K_F = K_B$. We cannot evaluate the binding ratio at time In the most extreme case, $K_B \gg K_A$ and $K_S = K_A$ and $K_F = K_B$. We cannot evaluate the binding ratio at time zero because there is no binding (division by zero), but we can evaluate the ratio at the earliest time dt. Because $= K_B$. We cannot evaluate the binding ratio at time zero because there is no binding (division by zero), but we can evaluate the ratio at the earliest time *dt*. Because $[RL] = 0$ at time zero, $[RL]$ will equal the derivat

Without competitor, $[RL]$ at early time points will be
 $[RL] = d[RL]/dt = Nh_{\perp}[L] = e^{n\pi r}(-K_{\perp}) \approx Nh_{\perp}[L]$

Without competitor, [RL] at early time points will be
$$
[RL] = d[RL]/dt = Nk_1[L](1 - \exp(-K_A)) \simeq Nk_1[L]
$$
\nIn the presence of competitor, [RL] will be $[BL] = d[BL]/dt = (NK[1]/(K - K_1))[(h -$

in the presence of competitor,
$$
[KL]
$$
 will be
\n
$$
[RL] = d[RL]/dt = (NK[L]/(K_F - K_S))[(k_4 - K_S)\exp(-K_S t) - (k_4 - K_F)\exp(-K_F t)]
$$
\nIn the most extreme case, $K_F \gg K_S$ and at the earliest time point $\exp(-K_F) \approx 0$ and $\exp(-K_S t) \approx 1$. Therefore,

 $[RL] = d[RL]/dt = (NK[L]/(K_F - K_S))[(k_4 - K_S)(K_S - K_S)]$
 $K_S) \exp(-K_S t) - (k_4 - K_F) \exp(-K_F t)$

In the most extreme case, $K_F \gg K_S$ and at the earliest

time point $\exp(-K_F) \approx 0$ and $\exp(-K_S t) \approx 1$. Therefore,
 $[RL] = NK_1[L](k_4 - K_S)/(K_F - K_S) \approx Nk_1[L]k_4/K_F$. Th K_S) $\exp(-K_S t) - (k_4 - K_F)\exp(-K_F t)$

In the most extreme case, $K_F \gg K_S$ and at the earliest

time point $\exp(-K_K) \approx 0$ and $\exp(-K_S t) \approx 1$. Therefore,
 $[RL] = NK_1[L](k_4 - K_S)/(K_F - K_S) \approx Nk_1[L]k_4/K_F$. The $\frac{R_{2.6} \cdot 6.124-36}{3.0333}$

Ther In the most extreme case, $K_F \gg K_S$ and at the earliest
time point $\exp(-K_F) \approx 0$ and $\exp(-K_S t) \approx 1$. Therefore,
 $[RL] = NK_1[L] (k_4 - K_S)/(K_F - K_S) \approx Nk_1[L]k_4/K_F$. The
ratio therefore is $\approx k_4/K_F \approx k_4/K_B \approx K_1/([I] + K_1)$. This
ratio will b $[RL] = NK_1[L](k_4 - K_S)/(K_F - K_S) \approx Nk_1[L]k_4/K_F$. The
ratio therefore is $\approx k_4/K_F \approx k_4/K_B \approx K_I/([I] + K_I)$. This
ratio will be 1:2 when $[I] = K_I$. By definition, when this
ratio is 1:2, $[I] = IC_{50}$. In other words, at the earliest
time poin ratio will be 1:2 when $[I] = K_I$. By definition, when this as metric is 1:2, $[I] = IC_{50}$. In other words, at the earliest B_{50} and $IC_{50} = K_I$. This relationship was derived for and the extreme case in which $K_B \gg K_A$. In l ratio is 1:2, $[I] = IC_{l}$
time points $IC_{50} = K_{l}$,
the extreme case in v
cases, $IC_{50} > K_{l}$ initial
be less than the K_{l} .

REFERENCES

-
- **EXEMPLE SET ALT ATTLE SET ALT ATTACK SET ALT ATTLE SET ALT ATTACK AND NOT A ARE SET ALT ANOTHER SET ANOTHER SET ANOTHER SET ARE ALT ANOTHER AND SET ARE ALT AND A SET** Boeynaems,
North-Holla
Arányi, P. K
ments with
227 (1980).
- **ICOUPETITIVE RADIOLIGAND BINDING**
3. Ehlert, F. J., W. R. Roeske, and H. I. Yamamura. Mathematical analysis of
the kinetics of competitive inhibition in neurotransmitter receptor binding TICS OF COMPETITIVE RADIOLIGAND BINDING 9
Ehlert, F. J., W. R. Roeske, and H. I. Yamamura. Mathematical analysis of
the kinetics of competitive inhibition in neurotransmitter receptor binding
assays. Mol. Pharmacol. 19:367 **NETICS OF COMPETITIVE RADIOLIGAND BINDING**
3. Ehlert, F. J., W. R. Roeske, and H. I. Yamamura. Mathematical analysis of
the kinetics of competitive inhibition in neurotransmitter receptor binding
assays. *Mol. Pharmacol.* Ehlert, F. J., W. R. Roeske, and H. I. Yamamura. Mathematical analysis of
the kinetics of competitive inhibition in neurotransmitter receptor binding
weslaws. *Mol. Pharmacol*. **19:367-371** (1981).
Weiland, G. A., and P. B
-
- assays. Mol. Pharmacol. 19:367-371 (1981).

4. Weiland, G. A., and P. B. Molinoff. Quantitative analysis of drup-receptor

interactions. 1. Determination of kinetic and equilibrium properties. Life Sci.

29:313-330 (1981) Koachman. Time-dependent decreases in the binding affinity of agonists for β -adrenergic receptors of intact S49 lymphoma cells: a mechanism of desensitization. *J. Biol. Chem.* 258:13597-13605 (1983). Pittman, R. N., an
- *γ* automation. J. Biol. Chem. 258:13597-13605 (1983).
 8. Fittman, R. N., and P. B. Molinoff. Interactions of agonists and antagonists

with β-adrenergic receptors on intact L6 muscle cells. J. Cyclic Nucleotide
 Res. Pittman, R. N., and P. B. Molinoff. Interactions of agonists and antagonists
with β -adrenergic receptors on intact L6 muscle cells. *J. Cyclic Nucleotide*
Res. 6:421-436 (1980).
agonists to beta-adrenergic receptors o
-
- Res. 6:421-436 (1980).

7. Toews, M. L., T. K. Harden, and J. P. Perkins. High-affinity binding of agonists to beta-adrenergic receptors on intact cells. *Procl. Natl. Acad. Sci.* U. S. A. 80:3553-3557 (1983).

8. Motulsky 9. Cheng, Y., and W. H. Prusoff. Relationship between the inhibition of α -
2. Cheng, Y., and P. A. Insel. Characterization of α -
2. Elophys. Res. Commun. 97:1562-1570 (1980).
9. Cheng, Y., and W. H. Prusoff. Relatio
- *Motulsky, H. J., S. J. Shattil, and P. A. Insel. Characterization of* α_3 *-adrenergic receptors on human platelets using [³H]yohimbine. <i>Biochem. Biophys. Res. Commun.* **97:1562**-1570 (1980).
Cheng, Y., and W. H. Pr Biophys. Res. Commun. 97:1562-1570 (1980).

9. Cheng, Y., and W. H. Prusoff. Relationship between the inhibition constant
 (K_i) and the concentration of an inhibitor that causes a 50% inhibition (I_{ω})

of an enzymatic (K_t) and the concentration of an inhibitor that causes a 50% inhibition (I_{50}) .
-

parameters. J. Soc. *Indust. Appl. Math.* 2:431-441 (1963).
 Send reprint requests to: Dr. **Harvey J. Motulsky, Division of Pharmacology, M-013 H, Department of Medicine, University of Cal-

ifornia San Diego, La Jolla, Send reprint requests to: Dr. He**
Pharmacology, M-013 H, Department
ifornia San Diego, La Jolla, Calif. 9209