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The sirtuins are a family of enzymes which control diverse and vital cellular functions, including metabolism
and aging. Manipulations of sirtuin activities cause activation of anti-apoptotic, anti-inflammatory, anti-stress
responses, and the modulation of an aggregation of proteins involved in neurodegenerative disorders.
Recently, sirtuins were found to be disease-modifiers in various models of neurodegeneration. However,

almost in all instances, the exact mechanisms of neuroprotection remain elusive. Nevertheless, the
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manipulation of sirtuin activities is appealing as a novel therapeutic strategy for the treatment of currently
fatal human disorders such as Alzheimer's and Parkinson's diseases. Here, we review current data which
support the putative therapeutic roles of sirtuin in aging and in neurodegenerative diseases and the feasibility
of the development of sirtuin-based therapies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Despite the significant progress in understanding the molecular
basis of neurodegeneration, the lack of known useful molecular
targets for effective therapeutic intervention has slowed down the
drug discovery processes. Since the discovery of sirtuin functions in
metabolism and aging, these activities were implicated as disease-
modifiers and as potential therapeutic targets for developing treat-
ments for neurodegenerative disorders.

2. Sirtuins

The yeast silent information regulator factor 2 (Sir2), a NAD'-
dependent class III histone deacetylase (HDAC), was the first sirtuin
described [1,2]. The yeast SIR complex (Sir2, Sir3 and Sir4) plays a key
role in heterochromatic gene silencing through regulation of histone
deacetylation at ribosomal DNA (rDNA) loci, telomeres, and mating-
type loci [3,4]. In S. cerevisiae, Sir2 extends the replicative lifespan
through suppression of formation of extrachromosomal ribosomal
DNA circles (ERCs) in the nucleoli [5].

The Sir2 gene is evolutionary conserved from prokaryotes to
humans. In C. elegans, the duplication of sir-2.1 gene (Sir2 ortholog)
increases the lifespan up to 50%. This process is dependent on the daf-
16 transcription factor, the member of forkhead box subgroup ‘O’
(FOXO) family, which is the downstream target of the insulin/IGF-1
signaling pathway [6]. An extra copy of the Sir2 gene in D. melano-
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gaster (dSir2) increases the longevity of females and males by 29% and
18% respectively [7].

The Sir2 function is often mentioned in connection to a condition
called calorie restriction (CR). CR is a reduction in calorie intake
compared to normal (ad libitum) consumption. The link between the
role of sirtuins, CR and longevity was first shown in S. cerevisiae. In
yeast, reduction in glucose levels in the media (CR condition for yeast
cells) leads to increased replicative lifespan [8]. The lifespan extension
was not observed in yeast lacking the Sir2 gene [8].

Currently, CR-mediated lifespan extension has been demonstrated
in other organisms such as fruit flies (D. melanogaster) [9], nematodes
(C. elegans) [10], spiders (Frontinella pyramitela) [11] and rodents [12].

There are seven members of the sirtuin family (Sir2 homologues)
in mammals (SIRT1-SIRT7) (Table 1) [4,13]. The sirtuins act as NAD"-
dependent protein deacetylases on a variety of targets, including
histones, transcription factors and apoptotic modulators [14,15]. The
sirtuins also have mono-ADP-ribosyl transferase activity, which is the
main enzymatic activity of SIRT4 and SIRT6 [16,17].

SIRT1, the nuclear protein which has the highest sequence
similarity to the yeast Sir2p [18], is the best understood mammalian
sirtuin in terms of its endogenous function and activity. SIRT1 has
been linked to the control of metabolic processes in adipose tissue,
liver and muscle through the regulation of the nuclear receptor
peroxisome-proliferator activated receptor-y (PPARy) and its tran-
scriptional co-activator PPARy co-activator-1a (PGC-1a) [19,20]. Other
non-histone substrates of SIRT1 are the tumor suppressor p53, the
FOXO family of transcription factors and NF-xB transcription factor,
which are involved in regulation of cell survival, proliferation and
stress response [21-23]. SIRT1 could also regulate the cell survival by
deacetylating the DNA repair factor Ku70, an inhibitor of Bax-
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Table 1
Mammalian sirtuins, subcellular localization, putative targets, and putative functions
Sirtuin  Subcellular Main targets Putative function Reference
localization
SIRT1T  Nucleus p53, Ku70, Regulation of cell survival [19-25]
PPARy, PGC- and metabolism, stress
1a,NF«<B, FOXO response control
SIRT2  Cytoplasm/ a-tubulin, Regulation of microtubule [38,42-44|
nucleus histone H4 stability, heterochromatin
formation, cell cycle
regulation
SIRT3  Mitochondria AceCS2 Activation of mitochondria [36,37]
function, thermogenesis
regulation
SIRT4  Mitochondria Glutamate Downregulation of insulin  [16]

dehydrogenase secretion in response to

amino acids
SIRT5  Mitochondria Unknown Unknown
SIRT6  Nucleus DNA pol B DNA repair control [38,39]
(associated with
heterochromatin)
SIRT7  Nucleus RNA Regulation of rRNA [40]
(concentrated in  polymerase [ synthesis and ribosome
nucleoli) production

Summary of functions, cellular localization, and enzymatic substrates of currently
known sirtuin family members (SIRT1-SIRT7).

mediated apoptosis [24,25]. Studies on SIRT1 knockout mice and
SIRT1 expression in embryos indicate its role in mammalian
development [26-28].

The understanding of the biological roles of sirtuins was greatly
advanced after discovery of resveratrol, a natural polyphenol present
in red grapes and red wine. The potential health benefits of red wine,
namely the cardioprotective effects, have been attributed to this
compound. Resveratrol exhibits strong antioxidant activity [29,30]
and has been shown to have anti-carcinogenic and anti-inflammatory
effects [31-33]. Remarkably, it was found that resveratrol activates the
yeast Sir2 and its mammalian homologue SIRT1 [34].

In mice, resveratrol protects against diet-induced obesity and
insulin resistance and significantly increases their aerobic capacity
[35]. It was suggested that the effects of resveratrol are mediated by
the induction of SIRT1 and the consequent decrease in PGC-la
acetylation which results in an increase of its activity.

Other three members of the sirtuin family which have been linked
to metabolic regulation are the mitochondrial proteins SIRT3, SIRT4
and SIRT5 [36]. These three proteins were found localized in different
compartments of the mitochondria, indicating unique function(s) of
each enzyme isoform in this organelle [37].

In mice, SIRT3 expression is induced in brown adipose tissue upon
cold exposure, consequently activating the expression of mitochon-
drial genes such as those encoding for uncoupling protein 1 (UCP1),
PGC-1q, cytochrome c oxidase subunits Il and IV, and ATP synthetase
[38]. CR also induces expression of SIRT3 in mice, both in white and
brown adipose tissue. Furthermore, SIRT3 decreases mitochondrial
membrane potential and the production of reactive oxygen species
while increasing cellular respiration [38]. Recent studies also revealed
that SIRT3 deacetylates and activates acetyl-CoA synthetase 2
(AceCS2) in mitochondria, both in vitro and in vivo, thus modulating
directly the activity of a metabolic enzyme [39].

SIRT4 does not possess detectable deacetylase activity in vitro;
however, it has mono-ADP-ribosyl transferase activity [16]. Recently,
SIRT4 has been shown to ADP-ribosylate and downregulate mito-
chondrial glutamate dehydrogenase (GDH) in pancreatic p-cells,
thereby downregulating insulin secretion in response to amino acids
[16].

SIRT4 and SIRT5 more closely resembled prokaryotic sirtuin se-
quences, suggesting their ancient, evolutionary conserved function(s)
in bacterial cells and mitochondria of higher organisms [40]. In com-

parison with SIRT3, SIRT5 possesses weak deacetylase activity in vitro,
but since the protein substrates are currently unknown it is hard to
pinpoint the exact function(s) of the protein. When SIRT3 and SIRT5
were co-expressed, the localization of SIRT3 changed from the
mitochondria to the nucleus [37]. This intriguing observation might
suggest SIRT5-dependent regulation of SIRT3 nuclear translocation,
and a novel role for SIRT3 in the nucleus.

Together with SIRT1, SIRT6 and SIRT7 are nuclear proteins [36].
However, their subnuclear localization differs and while SIRT7 is
concentrated in the nucleoli, SIRT6 is excluded from the nucleoli and is
highly associated with the heterochromatic regions [36]. SIRT6-
deficient cells display defective base excision repair (BER, one of the
DNA repair systems) and elevated levels of spontaneous genomic
instability [41]. Moreover, SIRT6 deficiency in mice leads to aging-like
degenerative processes (acute loss of subcutaneous fat, lordokyphosis,
osteopenia, lymphopenia and metabolic defects) [41]. SIRT7 interacts
with RNA polymerase I and histones and positively regulates the
transcription and expression of ribosomal RNA genes [42]. It has been
suggested that SIRT7 may regulate rRNA synthesis and ribosome
production in response to changes in NAD*/NADH ratio [43].

SIRT2 is a predominantly cytoplasmic tubulin-deacetylase protein
[36]. During G2/M transition and mitosis, SIRT2 is localized in the
nucleus, where it interacts with and deacetylates histone H4, which
leads to the formation of condensed chromatin [44]. Increased SIRT2
activity significantly delays cell cycle progression through mitosis,
suggesting a SIRT2 function as a mitotic checkpoint protein [45].
Moreover, SIRT2 prevents chromosomal instability as well as forma-
tion of hyperploid cells in the early metaphase [46].

Currently, the role of sirtuins in the regulation of mammalian
lifespan is not clear. However, taking into account that the sirtuins are
an evolutionary conserved family of proteins, it is fair to assume that,
similar to their role in yeast and invertebrates, the sirtuins also play a
role in the modulation of aging-related processes in higher organisms.

Diverse biological functions of sirtuin family members pave
the ground for further investigations of the therapeutic potential
of these molecules for currently untreatable neurodegenerative
diseases.

3. Neurodegenerative diseases

Over the past decades, numerous studies have demonstrated that
the pathogenesis of neurodegenerative diseases includes broad
changes and recruitment of multiple biochemical pathways. These
common biochemical and cellular processes include protein misfold-
ing, oligomerization and aggregation, proteolysis, post-translational
modifications, mitochondrial dysfunction, abnormal energy metabo-
lism, activation of stress, inflammation and pro-apoptotic responses,
and others (Fig. 1). Environmental factors affect probability of disease
on-set and progression.

Aging has been known as a major risk factor for a variety of
neurodegenerative disorders. However, while aging has been being
recognized as a strong disease modifier, until discovery of sirtuins, this
pathway was not amenable for therapeutic manipulation to intervene
with neurodegeneration.

4. Alzheimer's disease

Alzheimer's disease (AD) is one of the most devastating age-related
neurodegenerative diseases. The symptoms of this disorder can vary
greatly but the individuals affected present progressive cognitive
decline and behavioral changes. The increased life expectancy of
human beings has made AD one of the predominant medical problems
for elderly people. The vast majority of cases are idiopathic, but a small
fraction of cases are associated with autosomal dominant mutations in
the amyloid-precursor protein (APP) gene, presenilin-1 (PSENT) and
presenilin-2 (PSEN2) [47,48].
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The histopathological hallmarks of AD are the presence of intra-
neuronal neurofibrillary tangles and the accumulation of extracellular
amyloid plaques in the brains of affected individuals. Neurofibrillary
tangles are filamentous inclusions composed of hyperphosphorylated
forms of the microtubule-associated protein tau [49]. The main
component of amyloid plaques is the amyloid p-peptide (Ap) that
results from the proteolytic cleavage of amyloid-precursor protein
(APP) by the sequential action of B- and y-secretase. The widely
accepted p-amyloid hypothesis suggests that Ap is the major etio-
logical agent of AD pathology and, therefore, broad therapeutic stra-
tegies have been focused on the inhibition of neurotoxic Ap production
and aggregation [50].

There is growing evidence for a link between SIRT1 and Alzheimer's
disease [51-53]. SIRT1 protects against AR-induced neurotoxicity by
inhibiting NF-«B signaling in microglia [54]. It was recently reported
that an increase of SIRT1 deacetylase activity could be a mechanism by
which CR modulated AD-type amyloid neuropathology in Tg2576 mice
[53]. Overexpression of SIRT1 or pharmacological activation of SIRT1
by NAD" promotes a-secretase activity and attenuates the generation
of Ap peptides in embryonic Tg2576 mouse neurons in vitro. This
mechanism involves the regulation of serine/threonine Rho kinase

Sirtuin modulators Activity
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ROCK1, known for its role in the inhibition of the non-amyloidogenic
a-secretase processing of APP [53].

Likewise, CR treated monkeys have significantly reduced content
of Ap in the temporal cortex, compared to normally fed monkeys. The
AP content reversely correlates with SIRT1 concentration in the same
brain area [55].

Since the discovery of the cholesterol-carrying apolipoprotein E as
major risk factors for AD there has been a mounting interest in the role
of this lipid as a possible pathogenic agent [56]. Recently SIRT1 was
identified as a potential modulator of cellular cholesterol biosynthesis,
thus implicating another sirtuin neuroprotective mechanism [57].

In a recent report SIRT1 was found to be upregulated in mouse
models for AD and amyotrophic lateral sclerosis (ALS), a devastating
human motor neuron disorder [52]. In cell-based models of AD
tauopathy and ALS, both activation of SIRT1 and resveratrol promote
neuronal survival. In the inducible transgenic mouse model of AD
tauopathy, resveratrol reduces neurodegeneration in the hippocam-
pus, and prevents learning impairment, which correlates with
decreased acetylation of the known SIRT1 substrates PGC-1a and
p53. Lastly, injection of SIRT1-expressing lentivirus in the hippocam-
pus of transgenic mice conferred significant protection against
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Fig. 1. Sirtuin modulators and their effects on experimental models of neurodegenerative diseases. Multiple neuroprotective mechanisms targeted by the modulation of sirtuin

activities are shown.
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neurodegeneration. Collectively these data strongly suggest strong
therapeutic benefits of SIRT1 activation for tauopathies and, possibly,
ALS.

5. Parkinson's disease

Parkinson's disease (PD) is one of the most common progressive
neurodegenerative disorders, affecting about 2% of people over
65 years old and 4-5% of people over 85. PD is characterized by a
loss of dopaminergic neurons in the substantia nigra, which is
accompanied by muscle rigidity, bradykinesia, resting tremor and
postural instability. While the underlying causes for neuronal cell loss
are unknown, in some PD cases concentric hyaline cytoplasmic
inclusions called Lewy bodies (LB) can be seen via histological analysis.
LBs contain the protein a-synuclein (a-syn), as well as proteasomal
and lysosomal subunits and molecular chaperones [58,59].

While misfolding, oligomerization and aggregation of a-syn have
been implicated in PD pathology, the exact mechanisms of neurode-
generation remained elusive. It has been recently shown that SIRT2
inhibition prevented a-syn cytotoxicity and modulated its aggrega-
tion in cultured cells; ameliorated mutant a-syn neurotoxicity in rat
primary dopamine-positive neurons; and rescued degeneration of
dopaminergic neurons from a-syn toxicity in a Drosophila animal
PD model [60]. The results suggested that modulation of «-syn
aggregation pathway could be one of the sirtuin neuroprotective
mechanisms.

Studies of the neuroprotective effect of resveratrol on dopaminer-
gic neurons in organotypic midbrain slice culture showed that
resveratrol, together with another sirtuin-activating compound,
quercetin, prevented the decrease of dopaminergic neurons induced
by a dopaminergic neurotoxin 1-methyl-4-phenyl pyridinum (MPP")
[61]. The authors suggested the involvement of antioxidant properties
of resveratrol in its neuroprotective effect rather than SIRT1 activation
in this model, since other sirtuin inhibitors like sirtinol or nicotina-
mide did not attenuate the protective resveratrol effects. However,
resveratrol as well as sirtuin activator NAD inhibited dopaminergic
neurotoxicity of a DNA alkylating agent, N-methyl-N'-nitro-N-nitro-
soguanidine (MNNG) [61]. It is unclear whether it is the antioxidant or
sirtuin-activating activity (or both) that underlies the neuroprotective
effect of resveratrol.

6. Huntington's disease

Huntington's disease (HD) is an autosomal dominant neurodegen-
erative disorder, typically affecting mid-life individuals [62]. Slow
progressive HD is fully penetrable, and characterized by personality
changes, cognitive decline, abnormal motor movements, and ultimate
patient death. There is a loss of specific neuronal types in several
regions in HD brain, particularly in the striatal region of the basal
ganglia, where medium spiny neurons are the most affected [63]. HD
is caused by the mutant expansion of CAG-repeats encoding
polyglutamines (polyQ) within the huntingtin (htt) protein [64]. This
polyQ expansion leads to the misfolding of mutant htt and the
formation of mutant htt-containing protein aggregates in both
neuronal and glial cells in brains of HD patients and mouse transgenic
models of HD [65]. Despite the great strides in understanding the
molecular underpinnings of HD, no therapeutics are currently
available that prevent progression of this devastating disease.

The role of resveratrol and SIRT1 in neuroprotection has also been
studied in models of HD. The mutant huntingtin protein causes neuronal
degeneration and neuronal death [66]; however the mechanisms
remain elusive. In a C. elegans model of HD, treatment with resvera-
trol protected neurons overexpressing a huntingtin fragment from
huntingtin-mediated cytotoxicity in a daf-16-dependent manner [67].
Moreover, resveratrol also rescued neurons from polyglutamine-specific
cell-death in a HdhQ111 knock-in mouse model [67].

Several mechanisms have been uncovered that are likely to
contribute to the selective neurodegeneration observed in the disease.
These include protein aggregation, transcriptional dysregulation,
oxidative stress, perturbations in the kynurenine pathway, impaired
energy metabolism, defective vesicle trafficking in axons, and
impairment of ubiquitination and proteasomal function [68].

Neuroprotective mechanisms, underlying efficacy of SIRT1 activa-
tion and resveratrol treatment in HD models, are currently under
investigation. Of the multiple molecular defects that trigger neuronal
dysfunction and ultimately cause cell-death, transcriptional dysregu-
lation may be the major pathophysiological mechanism, perturbing
many cellular functions and leading to a cascade of secondary
pathological effects [69]. There is strong evidence that transcriptional
dysfunction, caused by altered nucleosomal dynamics, is a contribut-
ing factor in HD and, to lesser extent, in AD, PD, and other
neurodegenerative diseases. It is also strongly implicated in other
neurological disorders such as Rubinstein-Taybi, Rett's syndromes,
fragile X syndrome, and Friedreich's ataxia [70-73]. SIRT1 is involved
in the regulation of transcriptional silencing as well as in the
deacetylation of both histone and a growing number of non-histone
substrates. Some of these non-histone substrates include NF-«xB and
its subunit RelA/p65, TAFI68, histone acetyltransferase p300, p300/
CBP-associated factor (PCAF), MyoD, p53, Ku70, and others [14]. Global
transcriptional repression in HD is mediated by aberrant interactions
of mutant huntingtin with components of basal transcriptional
machinery (TBP, SP1) and histone acetyl transferases (CBP, p300),
while protein interactions with specific transcriptional factors (p53,
NF-xB) are involved in pathological dysregulation of selective path-
ways [69]. Therefore, it is highly plausible, that the basis for the
efficacy of SIRT1 activation in HD models is the restoration of
transcriptional dysregulation by modulation of the activity of
transcription factors and chromatin remodeling. While the ameliora-
tion of global transcriptional repression by SIRT1 activation remains to
be elucidated, SIRT1-dependent modulation of specific pathways,
relevant to pathophysiological changes in HD, appears as a likely basis
of observed neuroprotection.

This notion is supported by recent studies, revealing a critical role
for PGC-1a in HD [74]. Mutant huntingtin causes disruption of
mitochondrial function by inhibiting the expression of PGC-1« in a
mouse model of HD [75]. In another study it was reported that
expression of PGC-1« target genes was reduced in HD patients and in
the striatum of HD transgenic mice [76]. Since the activity of PGC-1a
can be regulated by SIRT1, it is conceivable that up-regulation of this
pathway underlies SIRT1 neuroprotection in HD models.

The undisputable efficacy of resveratrol in HD models, however,
has to be evaluated cautiously. The resveratrol molecule is subject to
rapid oxidation in the cell and, as a consequence, may play a little role
in activating sirtuins in the brain [77]. It is indeed possible that the
therapeutic effects of resveratrol in HD may be the result of its well-
known antioxidant properties [61,78-80]. The neuroprotective effects
of anti-oxidants, minocycline, coenzyme Q10, and others have been
shown in various models of neurodegeneration, including in HD
models [69].

7. Wallerian neurodegeneration

Axon degeneration is an active process that occurs in neurode-
generative diseases and peripheral neuropathies. In a mutant mouse
strain called slow Wallerian degeneration (WId®) the anterograde
degeneration of transected axons is markedly delayed because of a
mutation resulting in overexpression of a chimeric protein (WId®)
composed of the ubiquitin assembly protein Ufd2a and the nicotina-
mide adenine dinucleotide (NAD) biosynthetic enzyme Nmnat1 [81].
It was suggested that the activity of Nmnat1 alone (independent on
Ufd2a) provides the axon-protective activity of the Wld® protein and
that it is mediated by NAD production [82]. Resveratrol- or NAD-
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pretreated neurons exhibit a decrease in axonal degradation after
axon transection. Furthermore, SIRT1 knock-down or treatment with
sirtinol blocked NAD-dependent axonal protection.

Therefore SIRT1 was proposed as the downstream effector in the
Nmnat/NAD axonal protection activity. However, other groups
suggested that other, SIRT1-non-dependent mechanisms lay below
the Nmnat/NAD neuroprotective effect. In another study it was
reported that the degeneration of transected axonal segments could
be prevented by NAD exogenous local application 24 h before axon
transection. Furthermore, similar protective effects of NAD could be
observed in axons exposed to NAD directly at the time of transection
or even until 5 h after transection [83]. This suggests that the NAD-
dependent axon protection may be mediated primarily by its effect on
local bioenergetics than through NAD-induced transcription and other
nuclear events. In addition, neither the SIRT1 inhibitor sirtinol, nor
resveratrol affected the protective effects of NAD in the same assay
[83].

The role of SIRT2 in Wallerian degeneration has been studied as
well. In a recent study, the authors focused on the hypothesis that
suppression of microtubule depolymerization delays axonal degen-
eration, taking into account that Wld®* phenotype shows a substantial
resistance to microtubule depolymerizing drugs [84-86]. The basal
level of microtubule acetylation (stabilization) is increased in cultured
cerebellar granule cells from WId® mice. SIRT2 overexpression
abolished microtubule hyperacetylation and resistance to axonal
degeneration in these cells. Furthermore, SIRT2 knock-down
enhanced microtubule acetylation and resistance to axonal degenera-
tion in wild-type cerebellar granule cells [84].

8. Future perspectives

Avariety of pathological mechanisms are evidently associated with
human neurodegenerative disorders, with no particular mechanism
emerging as a major contributor. Apparently the outcomes of any
effective neuroprotective strategy, targeting specific disease compo-
nents, will remain uncertain until validation in human subjects.
Despite recent exciting data, the feasibility of developing sirtuin-based
therapy for human neurodegenerative diseases has yet to be
demonstrated in animal models, and then in human trials.

At this stage, genetic and pharmacological manipulations in rodent
disease models are crucial for target validation of sirtuin activities.
While the former approach could be obscured by functional
redundancy of HDAC family members, assessing the efficacy of highly
potent and selective sirtuin ligands in rodent disease models appears
as a key step of therapeutic development. Several formidable features
are associated with chemical development of sirtuin ligands, including
non-specific toxicity, cellular impermeability, poor PK properties, and
brain-permeability. There are apparent liabilities associated with
resveratrol structure, such as the low bioavailability in mammals, low
solubility, and sensitivity to light and oxidation, which limit the use of
this molecule in animal studies [87]. The discovery of synthetic SIRT1
agonists is an important step for the development of next generation
of potent, selective, bioavailable, and brain-permeable SIRT1 activa-
tors [88]. Similarly, the discovery and development of therapeutic-
grade activators and inhibitors against other sirtuin isoforms will be
necessary to assess the therapeutic potential of these targets in rodent
models of neurodegenerative diseases. The identification of effica-
cious molecules in animal models will expedite the development of
lead-candidates for human clinical trials.

A major concern in the development of novel therapies is their
safety for human subjects. One of the potential downsides associated
with SIRT1 activation is the over consumption of NAD", an important
bio-energetic molecule in the cell. Energy depletion has also been
suggested to play a major role in neuronal cell-death in the
neurodegenerative diseases [89]. The function of several enzymes
that play important roles in the cellular responses to stress require

NAD* for their activity including poly ADP-ribose polymerases (PARPs)
and some histone deacetylases [4,90]. By consuming NAD®, PARP1
may render neurons vulnerable to excitotoxicity and to cell-death
[91-93]. SIRT1 activity also consumes NAD" and, as such, has the
potential to deplete cellular energy. SIRT1 activity may be beneficial or
detrimental depending upon the magnitude of SIRT1 activity and the
cellular energy state. Indeed, it was reported that elevated SIRT1 levels
increased the vulnerability of cardiac myocytes to age-dependent
apoptosis, whereas lower levels of SIRT1 overexpression were
protective, possibly by inducing a mild adaptive stress response [94].
However, the ‘dark side’ of SIRT1 activation, pertinent to the energy
depletion, is likely to be less harmful for neurons than PARP1
activation. This notion rests on the fact that SIRT1 uses NAD" as a
co-factor for its enzymatic activity and that PARP1, activated in
response to oxidative stress and DNA damage, utilizes and cleaves a
large fraction of NAD" molecules while it generates poly ADP-ribose
polymers on histones and other protein substrates. Nevertheless, the
potential negative effects of SIRT1 activation, including conditions of
oxidative stress, have to be thoroughly investigated in rodent models.
Interestingly, recent findings showed that nicotinamide riboside
elevates NAD" and increases Sir2 function, thus potentially providing
an alternative therapeutic pathway for SIRT1 activation which is
harmless for the energy state of the cell [95]. Thus, sirtuins hold a
great potential as therapeutic targets in neurodegeneration.
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