
Journal of Computer-Aided Molecular Design, 14: 449–466, 2000.
KLUWER/ESCOM
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

449

A genetic algorithm for the automated generation of small organic
molecules: Drug design using an evolutionary algorithm

Dominique Dougueta, Etienne Thoreaua & Gérard Grassyb
aGALDERMA R&D, B.P. 87, F-06902 Sophia Antipolis Cedex, Valbonne, France (E-mail:
douguet1@caramail.com, etienne.thoreau@galderma.com);bCentre de Biochimie Structurale, UMR CNRS
9955, INSERM U414, Universit´e Montpellier I, Faculté de Pharmacie, avenue Charles Flahault, F-34060
Montpellier Cedex, France (E-mail: drrt.lr@wanadoo.fr)

Received 5 August 1999; Accepted 20 December 1999

Key words:automated structure generation, drug design, genetic algorithm, molecular modeling, QSAR, SMILES,
variable mapping

Summary

Rational drug design involves finding solutions to large combinatorial problems for which an exhaustive search
is impractical. Genetic algorithms provide a novel tool for the investigation of such problems. These are a class
of algorithms that mimic some of the major characteristics of Darwinian evolution. LEA has been designed in
order to conceive novel small organic molecules which satisfy quantitative structure-activity relationship based
rules (fitness). The fitness consists of a sum of constraints that are range properties. The algorithm takes an initial
set of fragments and iteratively improves them by means of crossover and mutation operators that are related to
those involved in Darwinian evolution. The basis of the algorithm, its implementation and parameterization, are
described together with an application in de novo molecular design of new retinoids. The results may be promising
for chemical synthesis and show that this tool may find extensive applications in de novo drug design projects.

Introduction

Traditional Quantitative Structure-Activity Relation-
ship Analyses (QSAR) establish linear or non-linear
models of biological activity dependence on molecular
properties. The models are useful either to explain the
activity of a specific class of compounds or to predict
the activity of new related analogues. Nevertheless,
de novo design based on such QSAR models is dif-
ficult to achieve when one wishes to find not only new
analogues but also novel chemical structures (not yet
patented for example). In order to assist our imagina-
tion, we have designed an expert system which creates
new structures with the desired shape, lipophilic and
electronic properties. The ‘virtual chemistry space’ is
extremely large, evaluated to 10100 [1] possible mole-
cules, and thus must be explored by an optimization
method in order to find suitable structures. Results
from quantitative and qualitative characterization of
known drug databases [2, 3] can also be included to

generate ‘drug-like’ structures and to streamline the
search in this huge space.

A simulation of the evolutionary pressure that is
effected by natural selection can be incorporated into
artificial intelligence algorithms to rapidly find good,
if not optimal, solutions. The basic idea is to main-
tain a population of candidate solutions which evolves
under a selective pressure that favors better solutions.
The more fit a member of the population, the more
likely it is to produce offspring. This selective pressure
and the evolutionary operatorscrossoverand muta-
tion, which are based on ideas first described by
Charles Darwin [4], can be used to optimize solutions
to a wide variety of problems. Evolutionary methods
[5–8] have been developed in the areas of elucidation,
design [9] and modeling of chemical and biochemical
structures [10]. Genetic algorithms (GA) were devel-
oped by Holland in the 1970s [11] and only recently
their potential for solving combinatorial optimization
problems has been explored [12, 13].



450

Figure 1. General flowchart for a genetic algorithm.① An initial
population of candidate solutions is generated by a random process.
② The fitness of each candidate is evaluated via a ‘fitness function’,
which takes as input a candidate solution and returns a numeric
score.③ Selection criteria are applied to chosen candidates based
on their fitness score for breeding.④ Breeding functions are applied
to produce new solutions, which replace the parent solutions.⑤
The cycle (or generation) continues: go to step② until convergence
criterion is met (solutions are no more improved).

GA has been adapted to optimize chemical struc-
tures and evolve them to more useful compounds in the
field of rational drug design. Glen and Payne [14] have
applied a GA to the design of structures based on a
wide variety of user-defined constraints. Their method
can utilize scalar constraints such as molecular weight,
surface constraints such as electrostatic potential, and
grid constraints such as the hydrophobic/hydrophilic
character of nearby atoms. This program operates, as
does the LeapFrog program [15], directly upon the 3D
molecular structure. PRO_LIGAND [16] generates
new leads by assembling fragments from substruc-
ture libraries. Then high- and low-quality molecules
are used as the initial population for an optimization
process based on GA. Results indicate that the GA
optimization step not only increases the average fit-
ness of the solutions, but also finds better solutions
than the design step. The Blaney et al. [17] program
was based upon two different types of encoding. First,
molecular graph encoding was used for manipulating
molecular structures and secondly, the SMILES line
notation, one-dimensional representation of a mole-
cule [18], was used for communication and storage of
molecules. The fitness of each of the population mem-
bers was evaluated by flexibly docking the molecule
into the relevant active site.

The present program LEA (Ligand by Evolution-
ary Algorithm) is able to operate directly on the
SMILES line notation and resembles the Glen and
Payne system in terms of constraints. SMILES line
notation is useful for communication and storage but
its manipulation by crossover and mutation operators
is more fastidious. Our program uses the concept of
fragment combination [19]. Fragment libraries are of
four types, fragment, function, ramification (small
fragment) and amino acid database. Our results show
that this GA is able to optimize molecules with ap-
propriate 3D properties obtained from the SMILES
manipulation. The algorithm, its implementation and
parameterization are first described. The first exam-
ple of optimization is the de novo design of retinoids
which has been used to explain the influence of the
GA parameters. A second example of optimization is
presented to show how structures evolve during opti-
mization (find salicylic acid structure). Finally, some
promising retinoid analogs are presented.

Methods

Genetic algorithms

By analogy to the natural model, each candidate is
called a chromosome. Each chromosome consists of
genes, each gene representing a parameter or feature
of the solution. Chromosomes are commonly a col-
lection of integers or binary numbers, but can also be
virtually any other type of information such as char-
acters. The basic steps used in a genetic algorithm
follow the patterns shown in Figure 1. First, an ini-
tial population of candidate solutions is generated by a
random process. Then, the fitness of each candidate
is evaluated via a ‘fitness function’, which takes as
input a candidate solution and returns a numeric score
(②). The breeding steps③ and ④ select one or two
candidates (parents) based on their fitness score and a
breeding function, crossover or mutation, to produce
new solutions, which replace the parent solutions (⑤).
Steps② to ⑤ are iterated until convergence is met
(solutions are no more improved).

Genetic methods are stochastic in nature and have
a finite probability of missing the optimal solution
while finding near-optimal solutions, but they have
proved to be very effective as search/optimization
algorithms [20].



451

Figure 2. Examples of molecules with their SMILES representa-
tion. Distinction is made between skeleton and branched groups.

SMILES line notation

SMILES (Simplified Molecular Input Line Entry Sys-
tem) [18] is a linear notation for molecules consist-
ing of a series of characters not including spaces.
Atoms are represented by atomic symbols. Hydro-
gens are generally omitted. Charges or unusual hy-
drogen attachments must be represented inside brack-
ets. Symbols beginning with a lower case letter
represent aromatic atoms but typing cyclohexatriene
C1=CC=CC=C1 is exactly the same thing and is
the notation employed in LEA. Adjacent atoms are
assumed to be connected by a single bond. Double
and triple bonds are represented by ‘=’ and ‘#’ re-
spectively. Branches are indicated by enclosing the
branched group in parentheses. Ring closures are
indicated by pairs of matching digits representing
extra bonds (Figure 2A). The basic SMILES rules
are adequate to describe the vast majority of organic
molecules and are sufficient for the purpose of this
work. In our case, the difficulties come from the cre-
ation of specific and efficient operators (mutation and
crossover) which act on this notation to meet chemical
and SMILES notation rules. The SMILES string is ex-
pressed as a skeleton with branched groups of first and
second order (Figure 2B).

Breeding functions

Genetic algorithms use the crossover operator to com-
bine fragments from two parents and the mutation
operator to modify the structure from one parent. In
each case, these operators must incorporate chemical
knowledge like valency rules. Mutation and crossover
are randomly selected using a roulette wheel selection.
The probability of mutation (pm) and the probabil-
ity of crossover (pc) are either initially fixed (with
pm + pc = 1) [21] or modulated by an adaptation
strategy. In an adaptation strategy, the probability of a
mutation increases (and the probability of a crossover
decreases) if the average fitness has been improved in
the last breeding step by the mutation operator, other-
wise the probability decreases (and the probability of
a crossover increases).

In LEA, there are two crossover operators (Fig-
ure 4) and 13 mutation operators (Figures 5, 6).
When crossover action is required, an operator is ran-
domly selected using a roulette wheel selection in the
crossover class and conversely, when mutation is re-
quired, one of the 13 is randomly selected using a
roulette wheel selection. Crossover and mutation op-
erators search, extract and recombine fragments. In
SMILES notation, this means SMILES chain scan-
ning, detection of ring and parentheses to be sure
they are never cut during substructure extraction and
checking the chemical viability of each fragment. To
do this we have included several functions (Figure 3)
which rewrite the SMILES string in order to have a
skeleton longer than branched group (in parentheses),
rewrite substructures in a ‘palindromic’, or inverse,
form when association occurs on the left of the chain,
check valency rules, detect undesirable groups [2, 22],
segment the skeleton, extract parenthesis content and
renumber rings when a mutation branches a new ring
on to an existing ring.

Table 1 summarises the modification that will be
made by operators (in vertical ground) on the SMILES
string (composed by a skeleton and branched groups).
Operators have been created in order to access the
overall chemical structure space by conferring the
ability to act on any part of the molecule (i.e., on
the SMILES string) with a certain probability, given
as a percentage. The user can define the breeding
panel by selecting operators at the beginning of the
optimization.



452

Table 1. Summary of the structural modifications made by breeding functions. SMILES strings are made up of a skeleton, branched
group(s) of first order (in parentheses) and branched group(s) in a branched group (branched group(s) of second order). Operators may
act on any part of the molecule (so of the SMILES string) in order to access the overall chemical structure space. Operator application
is allowed on the SMILES part if the sign✔ is present. Mutate element acts on any element on any part of the SMILES string. Make
ring, bond Oxidation and Reduction act also on any part of the SMILES string. It is a pattern matching which allows these operations.
The first occurrence in the SMILES string is replaced. Any fragment association must have a probability (indicated in percentage)
of being obtained. Insert a Fragment is a replacement of a fragment of the skeleton (from linear segmentation) or a replacement of a
branched group (first or second order). Insert an Amino Acid is a replacement of a fragment of the skeleton (from linear segmentation)
or replacement of a branched groups (first order only because branched groups of second order are generally small molecular weight).
Insert a Function means either a replacement of a fragment of the skeleton (from linear segmentation) or replacement of a branched
group (first or second order) or a hydrogen substitution on a carbon (creates a new branched group). Insert a Ramification means either
a small group addition in the middle of a fragment (linker) of the skeleton (from linear segmentation) or in a branched group (first
or second order) or a hydrogen substitution on a carbon (creates a new branched group). Deletion of a fragment occurs either in the
skeleton (from linear segmentation) or in a branched group (first or second order). Crossover 1 point combines either one fragment
from the skeleton (from linear segmentation) with a fragment from the second parent or replaces a branched group (first or second
order) of the first parent with a fragment from the second parent. Crossover 2 points combines two fragments from the skeleton (from
linear segmentation) of the first parent with a fragment from the second parent.



453

Figure 3. SMILES strings are manipulated (rewritten, segmented)
with respect for chemical and SMILES line notation rules.

Figure 4. (a) Crossover 1 point – Parent 1 is linearly segmented in
only one fragment (OC is constituted by only two atoms) and has a
branched group which can be used as a fragment or be replaced by
a fragment from Parent 2. Parent 2 is also linearly segmented in one
fragment. This segment is rewritten in a ‘palindromic’ form before
replacing the branched group of the first parent. (b) Crossover 2
points – Parent 1 is linearly segmented in three fragments and the
middle is replaced by a fragment from Parent 2 which is linearly
segmented in two fragments.

Figure 5. Examples of mutation operations. Fragment addition in
Insert Function (c) or Insert Ramification (d) or fragment replace-
ment in Insert Function (c), Insert Fragment (a) and Insert Amino
Acid (b).

Crossover

The crossover-1-point operator selects a random cut-
point (splicing parents across a single bond) and com-
bines the first portion of one parent with the second
portion of the other to produce a child (Figure 4a).
The crossover-2-points operator selects 2 random cut-
points and combines the head and the tail of the first
parent with a fragment of the second parent to pro-
duce a child (Figure 4b). In the segmentation step,
parents (their SMILES strings) are linearly segmented
and branched groups are extracted (Figure 2b). The
fragments always have much more than 3 atoms.

Mutation

The mutation operator emulates the mutation of DNA.
In binary implementations this is done by changing
a bit in the chromosome from on to off, or vice
versa. In integer or floating point implementations
this is done by changing a value to a different one
within the allowed range. In our problem, this operator
encompasses 13 different mutation types:
– Insert a fragmentfrom a fragment database which
can contain groups from a user specified database
(Figure 5a and Table 1). Fragments are sometimes
represented by two or three, chemically equivalent,
SMILES representations differing by the substitution
point. For example, a benzene group can be substituted
in ortho, meta and para position. Each has a SMILES



454

Figure 6. Examples of mutation operations. Fragment deletion (a)
or changes inside a molecule by mutation of an element (e), bond
oxidation (c), bond reduction (d) or make ring with 1 or 2 carbon
addition (b).

notation: C1=CC=CC=C1, C1=CC(=CC=C1),
C1=CC=C(C=C1), respectively.
– Insert an amino acidfrom a 45 amino acid (natural
or synthetic) library (Figure 5b and Table 1).
– Insert a function.This mutation is useful to increase
the probability of having a function in the molecule
(Table 1). Functions are incorporated on the left of its
SMILES string (Figure 5c).
– Insert a ramification. This can promote new sub-
stitution points or be used as a linker (Figure 5d and
Table 1).

Ramification and function groups have low mole-
cular weight and their related mutation operators can
substitute any carbon of the molecule. Conversely, In-
sert Fragment, Amino Acid or crossovers maintain the
original substitution (ortho, meta or para) (Table 1).
– Delete a fragment(Figure 6a), bond Oxidation
(Figure 6c) orReduction(Figure 6d) andmutate an
element(C, N, O, S, Halides) (Figure 6e) occur only if
the environment allows this procedure.
– Make ringwhen there is a match between a pattern
allowing ring formation and the SMILES structure.
The ring can be aromatic or not, with 5 or 6 atoms
and SMILES representation related to the substitution
place is randomly chosen (Figure 6b).

Fitness

The fitness function or scoring function is the pri-
mary place in which the traditional genetic algorithm
is tailored to a specific problem. The fitness does
not have to be well characterized as an equation with
calculable derivatives but needs only simple and rel-
evant guidelines. The fitness function is usually the
limiting step, in terms of computation time, for the
optimization when compared to the breeding process.
Score could be either an experimental biological mea-
sure [23, 24] or an empirical evaluation (binding en-
ergy [17], conformational energy [48], Carbo indices
(similarity)).

In LEA, we use physico-chemical properties of
molecules as indicative constraints (can be unsatis-
fied), employed in the scoring function, and imperative
constraints (cannot be unsatisfied) like a correct va-
lency. Available constraints in LEA are summarized
and defined in Appendix I. These constraints are mole-
cular descriptors such as volume, lipophilicity or elec-
tronic properties. They are used in QSAR analyses
studies which have been performed using the Variable
Mapping method [25–28].

This qualitative technique consists of an evaluation
of the distribution of the active and inactive mole-
cules as a function of the distribution of parameter
values. The validity of the representation is also es-
timated by Cluster Significance Analysis [29]. The
models based on bounded intervals of descriptors pro-
posed by the Variable Mapping Technique are easily
interpretable and can be readily used in the scoring of
compounds provided by a GA. The composite fitness,
in percentage terms, for a candidate i, is written as:

Scorei = 6p Wp
∗ Scoreip (1)

where, Wp is the weight (in percentage) applied to
the property p (the sum is taken over all properties).
For example, when a particular value Xt is targeted
for a property p then the score of the candidate i for
the property p (Scoreip) is 100% when Xip = Xt (X ip
is the property value of candidate i) or takes a value
between 1 and 99% when Xip lies between [Xt−Xt/10;
Xt+Xt/10] or is equal to 0% if Xip is out of this range.
Figure 7 shows the Scoreip variation when the con-
straint is expressed as a bounded interval. Constraint
can also be expressed as greater than or less than a
bound value. In this case match gives Scoreip equal to
100%, otherwise 0%.

Usually, fitness is set to be rapidly calculable in
order to allow efficient exploration of the search space.



455

Figure 7. Fitness calculation. Scorei (%) is calculated over all the
properties p (sum of Scoreip ). Scoreip represents the difference be-
tween the property of a new molecule i and the desired property
value (a bounded interval [Min; Max]).

Table 2. The constraints list and the optimized parameter set for the
design of retinoid agonist analogues. The definition of the properties
is given in Appendix I and the parameter set is introduced in the
Results part

Propertiesp(1...11) Variable mapping Wp

Length 12.5; 15.0 20%

Inertial axis along y 5.0; 9.0 10%

Inertial axis along z 3.0; 6.0 10% 80%

Solvent accessible surface 500; 600 20%

Radius of gyration 0.7; 0.9 20%

Insaturation <3.5

Lipophilicity 4.0; 6.0 5%

Dipole moment 50; 70 5%

Carboxylate function Present

VAC 2 Å (log P) −0.6;−0.4 5%

Pharmacophore (AH B) 6.0; 8.0 5%

Optimized parameter set:

Generation max: 100

Population size: 40 (random initialize)

Elitism: 1

All operators selected minus amino acid insertion mutation

Range= [5–9]

For example, our program evaluates thousands of
molecules (≈3000) during a 6 h run.

Retinoid fitness

This first example of an optimization problem is the
design of retinoid analogs from the evolution of frag-
ments such as benzene. Our retinoid fitness function
(Table 2) comes from a previous QSAR analyses
study [30] on retinoids [31]. Eleven physico-chemical
properties have been selected to characterize ago-
nist retinoids. The constraints are expressed as either
bounded intervals (Length must be between 12.5 Å
and 15.0 Å) or upper bound (Insaturation< 3.5) or

Figure 8. The Fitness scaling is made upon standardized scores.
The mean value of scores will have a selection value equal to the
medium of the range [Min− Max]. This scaling lowers the differ-
ence between scores and gives less fitted candidates a higher chance
to be selected.

characteristic (presence of a carboxylate function).
The property range differs between published QSAR
studies [30] and this constraint list comes from the
use of different software (conformational optimization
carried out by molecular mechanics rather than semi-
empirically). Some additional properties have been
implemented: The unsaturation index and the match
of a carboxylate fragment are imperative constraints
(chiral center detection can also be used). The former
serves to conceive aromatic compounds and the latter
is a common feature in retinoid agonist structures. If
unsaturation is not enough then a structure is elimi-
nated but if the carboxylate pattern is not matched then
it is added. Other properties useful to focus the search
in a promising sub-space are inertia axes (y and z in
our case), solvent accessible surface and lipophilicity.
We also take account of an intra-molecular distance
constraint between key functional groups which re-
flects the distance between the carboxylate part of the
molecule and a hydrogen bond acceptor and/or donor
element placed in the linker. This comes from obser-
vations and crystallographic studies [32, 33] which
show the importance of H-bond interaction with serine
272 (specific amino acid of the cavity of the receptor
RARα). In summary, 80% of the composite fitness is
associated with structural features in order to rapidly
focus on a retinoid structure type.

Salicylic acid fitness

This second fitness is to find the salicylic acid mole-
cule from the evolution of methane fragments. The
fitness is based on very simple constraints such as
molecular weight and a number of oxygen atoms (Ta-
ble 3). In this study, rings are created (not inserted
by insertion of a fragment). The objective was just to



456

Table 3. The constraint list and the optimized parameter set for the
design of salicylic acid (target). The definition of the properties is given
in Appendix I and the parameter set is introduced in the Results part

Target

Propertiesp(1...7) Variable mapping Wp

Molecular weight 152 20%

Insaturation 2.0; 3.0 30%

Carbons 8 10%

Oxygens 3 10%

Element 11 atoms 10%

Carboxyl Present 10%

Pharmacophore (AH DH) 2.2; 2.8; 10%

Parameter set:

Generation max: 100

Population size: 10 (Initial population: 10 methanes)

Elitism: 1

All operators minus amino acid and fragment insertion mutation

Range= [2–10]; increases during run until range= [2–18]

show an example of the evolution of few molecules
over several generations starting from methane. This
can be done only if the population size is small and if
the problem is easy to solve (Appendix II).

Implementation

The general diagram of LEA is given in Figures 9 and
10. Analogy with the general flowchart for a genetic
algorithm in Figure 1 is given with reference numbers.
In LEA, the population is initialized with n fragments
(benzene, methane or any other molecule). The fit-
ness of each molecule is evaluated by Equation 1
which returns a numeric score in percentage (step②).
In step③, roulette-wheel selection randomly chooses
parents for breeding with a selection value for each
molecule proportional to its fitness. The standardized
score (Scorei(std)) is scaling in a selection value (SVi),
which is the sector size of the roulette wheel (Fig-
ure 8). Selection value is null when a structure is non
viable (undesirable groups) or does not satisfy imper-
ative constraints such as valency. The scaling process
helps to maintain competition by shrinking the differ-
ence between scores. As the run goes on, it would be
wise to increase the selection pressure in order to force
the convergence near the end of the optimization. The

Figure 9. Genetic Design Flowchart. (1) General overview of the
steps involved in the optimization of molecules.

range [Min-Max] is then increased along a run by the
following equation:

Range= Range+ [Progress∗Range], (2)

Progress= 1 − [Gen_Max− Gen]/Gen_Max (3)

where Progress is set from 0.0 to 1.0 (0.0 at generation
0 and 1.0 at the generation Gen_Max). Gen_Max is the
maximum number of generations in the run and Gen
the current number of generation. In the present calcu-
lation, Range will be multiplied by 2 from generation
0 to generation Gen_Max.

In Step ④, roulette-wheel selection randomly
chooses an operator (crossover or mutation) with a
selection value proportional to its probability (pc and
pm) respectively). Then, another roulette-wheel se-
lection chooses one of the 2 different crossovers (if
crossover action is chosen) or one of the 13 different
mutations (if mutation action is chosen). The op-
erator is applied to combine the 2 selected parents
(crossover) or to mutate the first selected parent (mu-
tation). Steps③ to ④ are iterated until the number of



457

n children is reached. Finally, generation replacement
(step⑤) involves total or partial selection of breeding
candidates, whose children replace them. Elitism [34]
(hereafter called elite mode) ensures that the best solu-
tion in any generation is automatically carried into the
next generation.

The convergence criterion, which stops iteration,
can be a population convergence criterion or the best
candidate convergence criterion. The purpose of our
GA is not to have all molecules near the global min-
imum but to have a new starting structure. Thus, our
convergence criterion is related to the fittest (the elite)
candidate convergence. Results show that one hundred
generations are enough to observe convergence. The
application of a genetic algorithm offers fast and pow-
erful optimization properties as well as the generation
of a diverse set of possible structures. Each run, due to
the non reproductive property, generates a new family
of structures. In Results, explored space is displayed
by a Sammon Projection [35] on a two-dimensional
plot, where the similarity measure is based on 5 prop-
erties: length, lipophilicity, volume, radius of gyration,
and dipole moment. The projection uses about 10% of
the entire population (each 10th generation).

The algorithm LEA is encoded in Perl [36], C and
Fortran and was implemented under UNIX with an X-
Window interface. Runs were performed on an SGI
Indigo2 R10000 175MHz 64MB RAM. Several avail-
able programs are interfaced with LEA (Figure 10):
Rasmol [37] for the molecular visualization, Discover
for the conformational optimization (the CFF91 force
field is employed) [38], VAMP for semi-empirical cal-
culation [39], Corina [40] for the SMILES conversion
into a .mol2 file format [41], GEPOL [42] for the
calculation of volume and surfaces and Chemicalc2
[43] for the lipophilicity and solubility calculation.
Typically, the calculation takes about 6 h for 100
generations with a population size of 40 candidates.

Results

GA requires the specification of several parameters
such as the population size, the range [Min-Max] for
the fitness scaling, the replacement mode and the mu-
tation and crossover operator rates. A number of test
runs were designed to optimize and to evaluate the in-
fluence of the value of these parameters. Due to the
non reproductive property of GA, three runs were per-
formed for each parameter variation. The fitness used

Figure 10. Genetic Design Flowchart. (2) Steps involved during
fitness calculation.

for the parameter studies is the retinoid fitness given
in Table 2.

Population size

The influence of the population size is given in Fig-
ure 11. Analysis of the curves of the elite shows an
improvement of the maximum fitness with 10, 20 and
40 candidates but not with 60 or 80. From the 0th to the
20th generation, the optimization searches and focuses
in a promising sub-space (the exploration step). This
phase is important since after 20 generations, the elite
score plateaus and any following modifications on the
elite structure are minor. Small (10) or large (60, 80)
population sizes produce less well fitted elites than the
20 or 40 population size optimization. In contrast, the
average fitness is superior with a population size of
10 compared to 60 or 80. The population size of 10
is too small and premature convergence leads to a sub-
optimal solution. Such a population size allows a rapid
diffusion of analogues into the population and thereby
a rapid convergence of the average fitness. The effect
is inverted for a large population size. Elite is drowned
in the mass and cannot emerge from it. In this case



458

Figure 11. Average and maximum fitness variation with different population sizes (10, 20, 40, 60 and 80 candidates).

the average fitness convergence is slow and the elite
fitness is sub-optimal. Finally, the occurrence of an
unsuitable molecule (fitness equal to 1%) has more
impact on the average fitness of the small population
size than on the larger one. This is observed on the
average fitness magnitude variation. The slowness of
the average fitness convergence also comes from the
fact that only one child is produced by crossover (the
diffusion of the elite is slower).

Fitness scale

Influence of range size during fitness scaling is shown
in Figure 12. The trends are related, but inversely, to
the effects of the population size. Large range (high
selection pressure) has an effect similar to the small
population size in terms of elite and average fitness
convergence (see evolution of Range 4 optimization).
The more the elite is selected the more analogues are
produced and the faster average fitness convergence is.

Elitism strategy

In Figure 13, it is obvious that optimization without
elite mode is too erratic and that the best structures are
forgotten during a run (square curves). In this case, the
optimization failed. As already mentioned, we have
chosen to produce only one child by crossover and
we have taken a high mutation probability. This strat-
egy favors molecular diversity but compels use of elite
mode strategy.

Studies have shown that the speed of convergence
can be modulated either by the population size or by

the range size during fitness scaling as has already
been reported [14]. Fast average fitness convergence
means that the selection pressure is too high (too
large a range or too small a population size) and slow
average fitness convergence means that the selection
pressure is too weak (too small a range or too large a
population size).

Crossover and mutation probability

It is established that the choice of crossover probabil-
ity is dependent upon the problem to be solved and
other factors such as population replacement [44] In
traditional problems, mutation rate is usually small
[45] and is defined with regard to the candidate genes
(Holland style genetic algorithms). Usually, mutation
at a very low level (for example 1 bit, per 1000,
per generation in binary implementations) is neces-
sary to counter premature convergence. In chemical
problems, this mutation rate is more variable since
it takes a value from a few percent [24, 23] to 50%
or 80% [14, 17, 46] application probability (in terms
of candidates rather than genes (Davis style genetic
algorithms [21])). Interestingly, the low and high mu-
tation rate corresponds to two sorts of GA in these
de novo design programs, the first encodes the mole-
cule in a ‘1-dimensional’ chromosome (association of
amino acids to make a peptide for example) and the
second encodes the molecule in a ‘2D’ chromosome
(any general organic structure which can be branched).
The first problem consists of searching the right linear
arrangement of predefined blocks (peptide). The sec-
ond problem has many more available combinations



459

Figure 12. Influence of different range size (1, 2 and 4) on the average and maximum fitness.

Figure 13. Average and maximum fitness variation with different elitism strategy.

Figure 14. Average and maximum fitness variation with different mutation probabilities (20, 50 and 70%).



460

(the search space is larger since there are numerous
cut-points (no predefined block) in the 2 dimensions).
The former generally needs a low mutation rate and
the second a high mutation rate. Sundaram et al. [46,
47] have shown that the crossover/mutation optimum
rate is strongly dependent on the target sought: their
results show that when a particular side-chain is re-
quired then high mutation rates give better results.
Mutation is the only way to create a new substitu-
tion point on the skeleton of the candidate (replace a
hydrogen by a fragment).

Crossovers act on a 2-dimensional chromosome
since a branched group can be either replaced or be
a fragment to combine. This suggests a more difficult
combinatorial problem than in a ‘1D’ chromosome
and a sub-optimal efficiency of this operator is ex-
pected. These operators are too disruptive, on average,
since they have a high probability of breaking the right
combinations (randomly chosen cut-points can be any
single bond either in the skeleton or within paren-
theses). In traditional GA, disruption is less probable
since cut-points are generally set between well for-
matted genes representing a variable/parameter of the
problem to solve (torsion angles in a molecular me-
chanics calculation [48], amino acids in peptide).
Moreover, in our problem, functions which rewrite
SMILES strings in ‘palindromic’ form or in order to
limit high molecular weight fragment in parentheses
hinder stable (or canonic) strings which would reduce
disruptions by keeping features in their right initial
order. Nevertheless, these functions are necessary to
access the entire search space (fragments of the skele-
ton must be able to be linked by their right and/or left
sides if valency is correct).

Mutation is useful to prevent the algorithm from
becoming trapped in a local optimum. But it has,
theoretically, a dramatic effect since it can delete de-
sirable features. Figure 14 shows the fitness (average
and maximum) evolution with different probability of
mutation (pm). Variations are small and no conclu-
sions can be drawn on these results (these mutation
probabilities have no effect on the present optimiza-
tion). Nevertheless, Sammon projections have been
calculated in order to evaluate the search space ex-
plored during a run (Figure 15a, b and c). The diversity
measure, based on 5 properties (length, lipophilic-
ity, volume, radius of gyration, and dipole moment),
is projected in a 2-dimensional plot. It shows differ-
ences between mutation probability in terms of areas.
In each case, this surface is relatively small and thus
shows the good exploitation property of the GA (su-

Figure 15. The diversity measure, or evaluation of the search ex-
plored during a run, is provided by a Sammon projection with 20%
(a), 50% (b) and 80% (c) mutation rate. Points are molecules sam-
pled every 10th generation and grouped in four periods. In (c), 2
molecules are omitted since they are far from the cluster. Figures
show about 14% of the unique structure generated by GA. Unique
structures are about 47% of the generated molecules in the retinoid
fitness optimization since theoretically, 3901 molecules are pro-
duced (100 generations with a population size of 40 candidates and
with one elite strategy). The elite is also indicated. Lastly, about
3–4% of the 3901 molecules are not ‘viable’ since they are neither
converted by Corina nor optimized by Insight.



461

perposition of points). Differences come from the
common area between the four groups of snapshots
which decreases with mutation probability. With high
mutation probability, area or explored space increases
along a run. But, we also point out that the search
space explored is relatively small and this ensures that
any structure contains substructure(s) of the elite. Nev-
ertheless, it does not involve more unique structures
and no correlation can be made between the number
of adapted structures (>80%) and the mutation proba-
bility. In our ‘chemical type’ implementation it is im-
portant to emphasize that mutation is the only source
of functional novelty. Indeed, contrary to GA where
genes represent numeric coding of parameters, in our
GA, crossover is unable to cause the emergence of
novel functionality: combining methane and benzene
will never produce a hydroxyl group, while combining
two numeric values will give novel parameter values
(continuity of values).

Finally, we noted that distinction between one-
point-crossover and mutation by inserting a fragment
(or an Amino Acid) is tight since they frequently sub-
stitute fragments by an equivalent molecular weight
fragment. In fact, we work with a pseudo-population
larger than the initial fixed size. The effect of high
mutation rate is to allow large structural jumps in each
generation, while elite mode promotes generation-to-
generation stability. The resultant evolution is highly
accelerated, at the cost of losing some fine tuning of
the population.

Adaptation of crossover and mutation probability

The adaptation strategy, which improves or penalizes
operators according to the gain they provide, can be
used at operator type level (modulation of the proba-
bilities pm and pc) or at operator subtype level (mod-
ulation of the probability of each of the 15 breeding
operators).

In the last adaptation level, studies have shown that
the more an operator is selected the faster it is penal-
ized and reaches 1% probability. This means that, on
average, operators destroy good features since their
benefits are less than 50% of child which is more fit
than its parent(s). There are 13 mutation operators
for only 2 crossover types, thus mutations are always
quite frequent. Finally, operators are efficient enough
to improve children with respect to parents in order to
achieve optimization.

Optimization made under an adaptative strategy
modulates the probability pc and pm rather than the

Figure 16. Operator productivity (%) along generation. Percentage
of children which have been improved compared to parent(s). This
has been obtained during optimization with a population size of 40,
and one elite mode and with 50% mutation probability. The breeding
process involves 20 crossovers and 19 mutations at each generation.

probability of each of the 15 breeding operators. In
this case, the penalization or increase of probability
is made according to the mutation effects (on aver-
age). Then, crossover probability rapidly reaches the
maximum 90% and mutation probability reaches the
minimum 10%. These optimizations generally lead to
sub-optimal solutions. Such adaptation too frequently
involves crossovers which have been shown to be less
effective than mutation operators. Indeed, study of
the operator benefits, or productivity in percentage
of child improvement compared to parents, at each
generation in a fixed strategy problem has shown that
mutations are generally more productive (Figure 16
for the salicylic acid study with 50% crossover proba-
bility). Inverted trends are observed in traditional GA
results [44].

It is obvious that the adaptation strategies do not
improve optimization performance. The systematic
probability evaluation at each generation provides
flawed feedback, perhaps due to the noise in the op-
erator benefits (due to inconsistent productivity even
in the fixed strategy (Figure 16)). Adaptation happens
too late in the operator modulation strategy (opera-
tor probability increases after its benefits). Moreover,
we consider that the productivity threshold of 50%
involved in the penalization or increasing of oper-
ator probability is too high. An index of 20% of
improvement would be more appropriate to modu-
late probability (referred to productivity in Figure 16).
Therefore, adaptation is not necessarily a good thing
in itself [44] and in our case it is more powerful to
use a fixed strategy (crossover probability is fixed af-



462

ter some trial runs) combined with dynamic mutations
(mutations which occur in a foreseeable manner; this
will be discussed in the Conclusions).

Salicylic acid similarity

Best results have been obtained with a population of
10, combined with an elite mode strategy and a fitness
scaling by a range [2–10]. The initial population was
composed of 10 methanes. Many salicylic acid iso-
mers with scores of 100% have been obtained; these
are a combination of a benzene ring, one carbon, two
oxygens and a carboxyl function. Such constraints
are not relevant enough to distinguish between iso-
mers. There exist many available combinations with
di-substituted benzene but not all of them match the
pharmacophore constraint. The evolution of salicylic
acid over 25 generations is given in Appendix II.
Scores and associated weights are given. The opti-
mization begins with 10 methanes with a score of
1% (viable but unsuitable structures). The first breed-
ing step introduces branched groups since molecular
weights must increase. This is a necessary but not suf-
ficient step (ramifications are small fragments). The
first benzene appears in the second generation by mak-
ing a ring out of the previous ramification input. This
optimization does not set fragment insertion mutation
nor amino acid insertion mutation; thus a ring must
be created. The first ring is unsaturated enough that it
gives a score of 30%. Generation 3 is composed of 6
and 5 rings. The elite contains the exact number of el-
ements and is sufficiently unsaturated. Generation 13
shows the first combination of a benzene and an ester
function. Following generations promote the diffusion
of the substructure of the elite. Generation 22 shows
two structures with equal fitness of 69.6%. Unfortu-
nately, the elite which will be kept is the first which
appeared (meta substitution) instead of the second (the
ortho and the expected substitution). This structure has
not survived. Only one carbon mutation would give the
salicylic acid (exact number of oxygens and matching
of the pharmacophore key). Nevertheless, generation
25 has given the right structure. The salicylic acid has
been created by an insertion of a hydroxyl function in
a structure similar to the generation 13 elite.

These studies have also been performed in order
to tackle dynamic mutations as a kind of cooling
schedule. Thus, the first generation focuses search in
space where molecular weight and unsaturation are,
on average, satisfied. To do this, ramification and ring
making operators are frequently applied. Small mu-

Figure 17. Some examples of retinoid analogues using retinoid
fitness. Structures have been docked in the RARα and then su-
perimposed on a bound conformation of ATRA (all trans retinoic
acid).

tation operators such as mutate an element are little
used (probability equal to 1%). This prerequisite step
is to find an adapted skeleton before fleshing it out by
heteroatoms and functions.

Retinoid analogues

Best results have been obtained with a population of
40, combined with an elite mode strategy and a fitness
scaling by a range [5–9]. The initial population was
randomly initialized. Results show that LEA is able
to find retinoid structures, either used to derive the
model or not used to derive the model but similar to a
compound already present in the Galderma database.
Two novel structures are given in Figure 17. They have
been docked in the receptor RARα and superimposed
on the bound conformation of all trans retinoic acid
(ATRA). The receptor model has been obtained by
homology with the RARγ crystallographic data. Pro-
posed molecules are sometimes difficult to synthesize
and require modifications. This last step is conducted
by a medicinal chemist and new molecules are ‘re’-
evaluated. In the retinoid project, some structures have
been chosen and will be synthesized and tested.

Conclusions

This article describes an implementation of a genetic
algorithm for tackling the de novo design problem. A
parameterization study shows that GA is rather robust
since small changes in parameters such as popula-
tion size or range scale should have little effect on
the performance. Major differences have been seen
with mutation probability. Interestingly, best results
have been obtained with high probability mutation



463

since high probability crossover hinders average and
maximum fitness convergence or leads to premature
convergence. In such cases, we have shown that the
elite mode strategy is unavoidable. These properties
are somewhat similar to those used by Evolution Strat-
egy (ES) [6, 49]. Generally, ES solves real-valued
function optimization problems. Typically, it operates
on the real values themselves (phenotypic) rather than
any coding of the real values as is often done in GAs.
ES and GA both perform some form of recombina-
tion (conversely to Evolutionary Programming [5]).
ES also uses deterministic selection. Usually, such
methods use a self-adaptive method for determining
the appropriate mutation to use. Mutations are individ-
ually adjusted (the so-called dynamic mutation) and
consist of the addition of a random number taken from
a Gaussian distribution. Such continuous real-valued
mutations are impossible in structure design but we
can devise a system in which each chromosome will be
associated with an appropriate ‘mutation panel’ based
on its fitness rather than a standard deviation of the
Gaussian. This strategy will allow an internal control
of the extent of the modification that will occur on
the structure. For example, mutation by insertion of
a benzene has more effect on a structure than an atom
type mutation. The former is useful at the beginning of
the search (when scorei is poor) and the latter may be
important at the end of the optimization (high scorei).
Such a method is currently being examined in order to
devise another de novo design program.

Our results show that LEA can be used for find-
ing novel analogues (each run generates a different
family of solutions) but results strongly depend on the
quality of the model. The most successful GA imple-
mentations use hybrid GA combinations with other
techniques [50]. It can be obtained by a Classical
Neighborhood Search (a local search descent proce-
dure) that works on one solution at a time. Future
development will concentrate on implementing this
local search on the best structures at the end of run.

In a more general manner, LEA can be applied
to evolve diverse kinds of molecules, small organic
compounds, peptides or polymers (with changes on
operators). The program is also independent of the
genetic algorithm framework and thus can be used
to optimize structures in QSAR or QSPR studies or
binding energy if a docking program is used in a batch
mode manner.

Acknowledgements

The authors thank William Pilgrim for reading and
commenting upon the manuscript.

References

1. Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Des.
Today, 3 (1998) 160.

2. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J.
Comb. Chem., 1 (1999) 55.

3. Lewis, R.A., Mason, J.S. and McLay, I.M., J. Chem. Inf.
Comput. Sci., 37 (1997) 599.

4. Darwin, C., The Origin of Species, Dent Gordon, London,
1973.

5. Fogel, L.J., Owens, A.J. and Walsh, M.J., Artificial Intelli-
gence through Simulated Evolution, John Wiley & Sons, New
York, NY, 1966.

6. Rechenberg, I., Cybernetic solution path of an experimen-
tal problem, Royal Aircraft Establishment Transl., No 1122,
B.F. Toms, Transl. (Ministry of Aviation, Royal Aircraft
Establishment), Farnborough, Hants., U.K., 1965.

7. Clark, D.E. and Westhead, D.R., J. Comput.-Aided Mol.
Design, 10 (1996) 337.

8. Hibbert, D.B., Chemomet. Intell. Lab. Syst., 31 (1996) R5.
9. Schneider, G. and Schrödl, W., Proc. Natl. Acad. Sci. USA, 95

(1998) 12179.
10. Parrill, A.L., Drug Des. Today, 1 (1996) 12.
11. Holland, J., Adaptation in Natural and Artificial Systems

(second edition), M.I.T. Press, Cambridge, MA, 1992.
12. Forrest, S., Science, 261 (1993) 872.
13. Goldberg, D.E., Genetic Algorithms in Search, Optimization,

and Machine Learning, Addison-Wesley, Reading, MA, 1989.
14. Glen, R.C. and Payne, A.W.R., J. Comput.-Aided Mol. De-

sign, 9 (1995) 181.
15. LeapFrog, Tripos Inc., St Louis, MO, U.S.A.
16. Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray,

C.W., Robson, B. and Waszkowycz, B., J. Comput.-Aided
Mol. Design, 9 (1995) 139.

17. Blaney, J.M., Dixon, J.S. and Weininger, D., Molecular
Graphics Society Meeting on Binding Sites: Characterising
and Satisfying Steric and Chemical Restraints, York, U.K.,
March 1993. Weininger, D., WO95/01606.

18. Weininger, D., J. Chem. Inf. Comput. Sci., 30 (1990) 237.
19. Bemis, G.W. and Murcko, M.A., J. Med. Chem., 39 (1996)

2887.
20. Lucasius, C.B. and Kateman, G., Chemometr. Intell. Lab.

Syst., 19 (1993) 1.
21. Davis, L., In J.D. Schaffer (Ed.), Proceedings of the Third

International Conference on Genetic Algorithms and Their
Applications, San Mateo, CA, Morgan Kaufmann, 1989,
pp. 61–69.

22. Rishton, G.M., Drug Des. Today, 2 (1997) 382.
23. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K.,

Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.
24. Singh, J., Ator, M.A., Jaeger, E.P., Allen, M.P., Whipple,

D.A., Soloweij, J.E., Chowdhary, S. and Treasurywala, A.M.,
J. Am. Chem. Soc., 118 (1996) 1669.

25. Grassy, G., Fagart, J., Calas, B., Adenot, M., Rafestin-Obelin,
M.E. and Auzou, G., Eur. J. Med. Chem., 32 (1997) 869.

26. Grassy, G., Trappe, P., Bompart, J., Calas, B. and Auzou, G.,
J. Mol. Graphics, 13 (1995) 356.



464

27. Grassy, G., Yasri, A., Buelow, R., Kaczorek, M. and Calas, B.,
Actualités de Chimie Thérapeutique, 24, 1998.

28. Grassy, G., Calas, B., Yasri, A., Lahana, R., Woo, J., Lyer, S.,
Kaczorek, M., Floc’h, R. and Buelow, R., Nat. Biotech., 16
(1998) 748.

29. McFarland, J.W. and Gans, D.J., J. Med. Chem., 29 (1986)
505.

30. Douguet, D., Thoreau, E. and Grassy, G., Quant. Struct.-Act.
Relat., 18 (1999) 107.

31. Chambon, P., Faseb J., 10 (1996) 940.
32. Klaholz, B.P., Renaud, J.P., Mitschler, A., Zusi, C., Chambon,

P., Gronemeyer, H. and Moras, D., Nat. Struct. Biol., 5 (1998)
199.

33. Ostrowski, J., Roalsvig, T., Hammer, L., Marinier, A., Starrett,
J.E. Jr, Yu, K.-L. and Reczek, P.R., J. Biol. Chem., 273 (1998)
6, 3490.

34. DeJong, K., Machine Learning, 3 (1988) 121.
35. Sammon, J.W., IEEE Trans. Comput., C-18 (1969) 401.
36. Wall, L., Christiansen, T. and Schwartz, R.L., Programming

Perl, O’Reilly.
37. RasMol v2.5, Sayle, R., Biomolecular Structure, Glaxo Re-

search and Development, Greenford, Middlesex, U.K., 1994.

38. InsightII, Molecular Simulations Inc., San Diego, CA.
39. VAMP, Oxford Molecular Ltd, Oxford, U.K.
40. CORINA, Oxford Molecular Ltd, Oxford, U.K.
41. Sybyl, Tripos Associates, St. Louis, MO.
42. Silla, E., Tunon, I. and Pascual-Ahuir, J.L., J. Comput. Chem.,

12 (1991) 1077. QCPE #554.
43. Suzuki, T., J. Comput.-Aided Mol. Design, 4 (1990) 155.

QCPE #608. CHEMICALC-2.
44. Tuson, A. and Ross, P., Evol. Comput., 6 (1998) 161.
45. Hibbert, D.B., Chemometr. Intell. Lab. Syst., 19 (1993) 277.
46. Venkatasubramanian, V., Chan, K. and Caruthers, J.M., J.

Chem. Inf. Comput. Sci., 35 (1995) 188.
47. Sundaram, A. and Venkatasubramanian, V., J. Chem. Inf.

Comput. Sci., 38 (1998) 1177.
48. Brodmeier, T. and Pretsch, E., J. Comput. Chem., 15 (1994)

588.
49. Schwefel, H., Evolution and Optimum Seeking, Wiley, New

York, NY, 1995.
50. Osman, I.H., Operational Research Tutorial Papers,

Operational Research Society Press, Birmingham, U.K.,
1995.

Appendix I

Auto-correlation vectors (Vac3D); hydrogen are also included.
Auto-correlation vectors weighted by positive partial charge (Vac3D_chgp)
Auto-correlation vectors weighted by negative partial charge (Vac3D_chgn)
Auto-correlation vectors weighted by lipophilicity logP (Vac3D_logP)
Lipophilicity LogP by Ghose & Crippen (atomic contribution method) or by Suzuki (fragmental contribution
method)
Molar Refractivity calculated by Ghose & Crippen (atomic contribution method)
Molecular Weight
Formula Weight
Insaturation Index (ratio of number of bond on number of double and triple bonds)
Surfaces (Solvent Accessible Surface, Excluded Surface or Van der Waals Surface) calculated by GEPOL.
Volume by GEPOL or by VAMP
Length (longest distance between atoms in molecule)
Inertial axis alongx, y andz
Radius of gyration (globularity index)
HOF, Heat of Formation obtained by VAMP calculation
Lowest Unoccupied Molecular Orbital (LUMO) obtained by VAMP calculation
Highest Occupied Molecular Orbital (HOMO) obtained by VAMP calculation
GAP (LUMO-HOMO), Stability index obtained by VAMP calculation
Dipole Moment (in Debye units)obtained by VAMP or Discover optimization
Pattern research (generally function like keton, hydroxyl, carboxylate,. . . ) Pharmacophore research (AH:
hydrogen bond acceptor, DH: hydrogen bond donor, B: hydrogen bond donor and acceptor).



465

Appendix II

The evolution of salicylic acid analogues over 25 generations starting from methane



466


