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The Molecular Mechanics/Poisson—Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/
Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules
by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate
the performance of these methods, we report here an extensive study of 59 ligands interacting with six
different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation,
ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies
predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation
length has an obvious impact on the predictions, and longer MD simulation is not always necessary to
achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this
parameter should be carefully determined according to the characteristics of the protein/ligand binding
interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number
of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding
free energies calculated by three Generalized Born (GB) models. We found that the GB model developed
by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors.
Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies.
Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative,
binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as

a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.

INTRODUCTION

Computational methods that combine molecular mechanics
energy and implicit solvation models, such as Molecular
Mechanics/Poisson—Boltzmann Surface Area (MM/PBSA)
and Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA), have been widely exploited in free energy
calculations.' * Compared with rigorous methods such as
free energy perturbation (FEP) and thermodynamic integra-
tion (TI) methods,* MM/PBSA and MM/GBSA are more
computationally efficient. A related approach is the linear
interaction energy (LIE) method,” which averages interaction
energy from the MD simulations to estimate the absolute
binding free energy. Similar to MM/PBSA and MM/GBSA,
LIE restricts the simulations to the two end points of ligand
binding. Different from most empirical scoring functions used
in molecular docking, MM/PBSA and MM/GBSA do not
need a large training set to fit different parameters for each
energy term.®” "' Moreover, both MM/PBSA and MM/GBSA
allow for rigorous free energy decomposition into contribu-
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tions originating from different groups of atoms or types of
interaction.'?'*

In MM/PBSA or MM/GBSA, the binding free energy
(AGying) between a ligand (L) and a receptor (R) to form a
complex RL is calculated as

AG,,, = AH — TAS =~ AE,,, + AG_, — TAS (1)

+ AE

electrostatic

AEyy, = AE

internal

+ AE,,, (2)

AG,; = AGppgp T AGg, (3)

where AEym, AGy, and —TAS are the changes of the gas
phase MM energy, the solvation free energy, and the
conformational entropy upon binding, respectively. AEym
includes AFEjema (bond, angle, and dihedral energies),
AE jccrostatic (€lectrostatic), and AE, 4, (van der Waals) ener-
gies. AGy, is the sum of electrostatic solvation energy (polar
contribution), AGpg/ge, and the nonelectrostatic solvation
component (nonpolar contribution), AGss. The polar con-
tribution is calculated using either the GB or PB model, while
the nonpolar energy is estimated by solvent accessible surface
area (SASA). The conformational entropy change —TAS is
usually computed by normal-mode analysis on a set of
conformational snapshots taken from MD simulations.
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A common strategy to reduce noise and cancel errors in
simulations is to run molecular dynamics (MD) simulations
on the complex only. Snapshots taken from this single
trajectory of MD simulation are used to calculate each free
energy component in the above equations. In such a single
trajectory approach, AFEjema is canceled between ligand,
receptor, and complex, which can significantly reduce the
noise in most cases. One can also use a separate trajectory
approach to calculate the energy terms by taking snapshots
from three individual MD simulations of the complex,
protein, and ligand separately.' In principle, this approach
is more accurate than the single trajectory approach. Mean-
while, it is also more expensive in terms of computational
cost.

MM/GBSA and MM/PBSA have been successfully ap-
plied to various protein—ligand'>~>* or protein—protein/
peptide complexes,”* 2® but their performance is system-
dependent®’*® In addition, MM/PBSA and MM/GBSA are
sensitive to simulation protocols, such as the sampling
strategy of generating snapshots and entropy calculation
methods as well as other parameters, e.g., charge models,
force fields, the solute dielectric constant, and radius
parameters in continuum solvent models.' For example, Weis
and co-workers studied how the force fields and the methods
to sample conformational space affected the calculated
binding free energies of seven biotin analogues. They found
that simulation results are not sensitive to force fields, but
explicit water molecules are indispensible in MD simula-
tions.?’

Here, we systematically investigated the following issues
in MM/PBSA and MM/GBSA methods: (1) the effect of the
length of MD simulations, (2) the suitable solute dielectric
constant to calculate the polar solvation energies, (3) the best
way to perform the entropy calculations, and (4) a compari-
son of the performances of different PB and GB models to
evaluate the absolute binding free energy and rank affinities
of ligands bound to the same protein.

For such an investigation, it is necessary to choose a set
of reliable test systems. We performed MM/PBSA and MM/
GBSA calculations with various protocols and parameters
for 59 ligands bound to six different proteins. These systems
were selected because they have been well characterized by
X-ray crystallography, and reliable experimental binding free
energies have been obtained for a number of ligands.
Moreover, systems like avidin and P450cam have been
studied by several theoretical techniques, such as FEP, LIE,
and MM/PBSA,*® 732 and we can compare our results with
the previous studies.

MATERIALS AND METHODS

1. Preparation of Complexes. The MM/GBSA or MM/
PBSA calculations were applied to six different protein
systems, including o-thrombin (seven ligands), avidin (seven
ligands), cytochrome C peroxidase (18 ligands), neuramini-
dase (eight ligands), P450cam (12 ligands), and penicil-
lopepsin (seven ligands). The experimental binding data and
the PDB entries for the six proteins are listed in Table S1 in
the Supporting Information. The chemical structures of the
ligands are shown in Figure S1 in the Supporting Informa-
tion. The protonated states for all ligands are shown in Figure
S1 in the Supporting Information.
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For ligands bound to a-thrombin, cytochrome C peroxi-
dase, neuraminidase, and penicillopepsin, MD simulations
were performed on the basis of the crystal structures of the
complexes. The starting structures of the six avidin analogues
(b2—b7) were generated on the basis of the avidin—biotin
complex (PDB entry: lavd®®). The biotin molecule in the
crystal structure was manually mutated to the other ligands.
It has been shown that the neutral form of the guanidinium
group in b2 and b5 biotin analogues is dominant when it is
bound to the protein.>* Therefore, the neutral form of the
guanidinium group was used in our simulations. The crystal
structures of the nine P450cam ligands were used for MD
simulations. Starting structures of the other three P450
ligands (e3, e5, and e6) were obtained by manually modify-
ing the ligand (el) in the crystal structure of 2cpp® with
the conformation of the protein unaltered. The preparation
of the models was accomplished in the SYBYL molecular
simulation package.*®

In the cytochrome C peroxidase complexes, the lone-pair
electrons of the & nitrogen in His175 form resonant bonds
with the iron ion, and the hydrogen atom is located at the &
nitrogen of His175. In the P450cam complexes, lone-pair
electrons of the sulfur atom in Cys357 form resonant bonds
with the iron ion, and this cysteine residue is thus deproto-
nated. All of the crystal water molecules were kept in the
simulations.

The atomic partial charges of all ligands were derived by
semiempirical AM1 geometry optimization and subsequent
single-point Hartree—Fock (HF)/6-31G* calculations of the
electrostatic potential, to which the charges were fitted using
the RESP technique.?’” The reason why we chose AM1 for
optimization, not the usually used HF/6-31G(d), was to
reduce computational cost.>® The optimization and the
electrostatic potential calculations were conducted using
Gaussian 03.%° Partial charges and force field parameters of
the inhibitors were generated automatically using the ante-
chamber program in AMBER9.0.*°

In molecular mechanics (MM) minimizations and MD
simulations, the AMBERO3 force field was used for pro-
teins*' and the general AMBER force field (gaff) was used
for ligands.*> The force field parameters developed by
Giammona were used for the heme groups in the cytochrome
C peroxidase and the P450cam systems.** To neutralize the
systems, counterions of CI~ or Na™ were placed in grids that
had the largest positive or negative Coulombic potential
around the protein. The whole system was immersed in a
rectangular box of TIP3P water molecules. The water box
was extended 9 A from solute atoms in all three dimensions.

2. Molecular Dynamics (MD) Simulations. In MM
minimization and MD simulations, particle mesh Ewald
(PME) was employed to treat the long-range electrostatic
interactions.** The dielectric constant was set to 1.0, and the
cutoff for nonbonded interactions was set to 8 A. Before
MD simulations, the complexes were relaxed by 5000 cycles
of minimization procedure (500 cycles of steepest descent
and 4500 cycles of conjugate gradient minimization). After
minimization, the system was gradually heated in the NVT
ensemble from 10 to 300 K over 20 ps. Initial velocities
were assigned from a Maxwellian distribution at the starting
temperature. We then performed 5 ns NPT MD simulations
with a target temperature of 300 K and a target pressure of
1 atm. The temperature was controlled by the Andersen
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temperature coupling scheme,*’ and the pressure was con-
trolled by the isotropic position scaling protocol applied in
AMBER.*® The SHAKE procedure was employed to con-
strain all hydrogen atoms, and the time step was set to 2.0
fs.*” After equilibration, the coordinates of the complexes
were saved every 2 ps. The MM optimization and MD
simulations were accomplished by using the sander program
in AMBER9.0.%¢

3. MM/PBSA Calculations. The gas-phase interaction
energy between the protein and the ligand, AEy,, is the sum
of electrostatic and van der Waals interaction energies. The
solvation free energy AGgoyaion 1S the sum of polar (AGpp)
and nonpolar (AGs,a) parts. The AGpg term was calculated
by solving the finite-difference Possion—Boltzmann equation
using Delphi I1.*® In Delphi calculations, the grid spacing
was set to 0.5 A, and the longest linear dimension of the
grid was extended at least 20% beyond the protein. The Parse
radii were employed for all atoms.** The Pauling van der
Waals radii of 1.35 and 1.95 A>° were used for F and Br,
respectively. For Fe in the heme group, the van der Waals
radius in the force field was used. The value of the exterior
dielectric constant was set to 80, and the solute dielectric
constant was set to one of three values: 1, 2, or 4.2* The
nonpolar contribution was determined on the basis of solvent-
accessible surface area (SASA) using the LCPO method:”"
AGspn = 0.0072 x ASASA. For the calculations of AEyn,
AGgg, and AGs,, 625 snapshots evenly extracted from the
single MD trajectory of complex from 0 to 5 ns were used.

4. MM/GBSA Calculations. In the MM/GBSA calcula-
tions, the gas-phase interaction energy (AEyy) and the
nonpolar (AGs,) part of the solvation energy were calculated
in the same way as in the MM/PBSA calculations. The
electrostatic solvation energy (AGgg) was calculated by using
GB models. A value of 80 was used for the exterior dielectric
constant, and 1, 2, or 4 was used for the solute dielectric
constant for comparison. Three GB models implemented in
AMBERO9.0 were used, including the pairwise GB model of
Hawkins and co-workers (referred to as GBHCT) 23 with
parameters developed by Tsui and Case,”* and two modified
GB models developed by Onufriev and colleagues (referred
to as GBOBC! and GBOBC?) >

5. The Entropy Calculations. The normal-mode analysis
was performed to evaluate the conformational entropy change
upon ligand binding (—7TAS) using the nmode program in
AMBER9.0.*¢ Because the normal-mode analysis is com-
putationally expensive, we only considered the residues
within a 12 A sphere centered at the ligand, and these
residues were retrieved from an MD snapshot for each
ligand—protein complex. The open valences were saturated
by adding hydrogen atoms using the tleap program of
AMBER9.0.%¢ The corresponding ligand and receptor were
extracted from the reduced complex structure. Then, each
structure was fully minimized for 100 000 steps using a
distance-dependent dielectric of 4r; (r; is the distance
between two atoms) to mimic the solvent dielectric change
from the solute to solvent until the root-mean-square of the
elements of the gradient vector was less than 5 x 10™* kcal
mol™" A~'. To reduce the computational demand, 125
snapshots were taken from O to 5 ns to estimate the
contribution of the entropy to binding. The final conforma-
tional entropy was obtained from the average over the
snapshots. It should be noted that, different from the other
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energy terms, the entropy contribution is computed in a way
independent of the internal dielectric constant.

RESULTS AND DISCUSSION

1. Binding Free Energies Calculated by MM/PBSA. We
first calculated the binding free energies of the six protein
systems using the MM/PBSA method. As the first try, the
binding entropy was averaged over 45 snapshots from 0.2
to 2 ns, and the other energy terms were averaged over 225
snapshots from 0.2 to 2 ns. We investigated how the interior
dielectric constant affected the performance of MM/PBSA.
Three different solute dielectric constants (1, 2, and 4) in
the PB calculations were used, and the best value was
determined by comparing the correlation coefficients between
the calculated and the experimental binding free energies.

For the six systems studied here, the best correlations are
shown in Figure 1, and the calculated binding free energies
and five energy components are listed in Table 1. In terms
of the correlation coefficients, the accuracy of MM/PBSA
varied for different systems. The binding free energies
between avidin and its ligands from the simulation correlate
very well with experimental values (correlation coefficient
r = 0.92). For three other systems, a-thrombin, neuramini-
dase, and P450cam, MM/PBSA achieved relatively satisfac-
tory performance (r = 0.68—0.81). MM/PBSA did not
perform well on cytochrome C peroxidase (r = 0.27) and
penicillopepsin (r = 0.41).

The success of MM/PBSA on the avidin system is not
surprising. The seven ligands have homologous chemical
structures, and their experimental binding free energies span
a wide range, from —4.5 to —20.4 kcal/mol. The system has
been widely studied using several methods, including FEP,*
LIE,** and MM/PBSA.'%2%-282% A]] of the computational
results showed good correlation with the experimental values.
In this system, it was observed that the large change of the
electrostatic interaction upon binding was compensated by
the desolvation energy (Table 1), which is common in many
systems.

The correlation coefficient (r = 0.72 at &,= 1 and r =
0.69 at ¢;,= 2) of the P450cam system is acceptable. Almlof
et al. studied P450cam using the LIE method, and they
achieved a correlation coefficient of 0.96.%" It should be noted
in the LIE analysis that two scaling parameters (o and f3)
for van der Waals and electrostatic interactions and a constant
term (y) were adjusted by linear correlation. That is to say,
in LIE, different energy has a different weight. Therefore, it
is not surprising to see that the correlation given by MM/
PBSA is worse than that given by LIE.

The correlation coefficient for neuraminidase (r = 0.68
at ¢,= 4) is not as good as that for avidin. One possible
reason is that, compared with the avidin test set, the binding
free energies of the neuraminidase ligands fall into a much
narrower range, from —3.7 to —11.5 kcal/mol, than those
of the avidin ligands.

There are 18 ligands in the cytochrome C peroxidase
system, and their binding free energies range from —3.9 to
—7.0 kcal/mol. As shown in Figure 1, the correlation
coefficient is only 0.27, which means that MM/PBSA is not
efficient for ranking the binding affinities. The predictions
on cytochrome C peroxidase are poor, since the ligands are
dissimilar, while those of, for example, avidin are similar,
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Figure 1. The correlations between the binding free energies calculated by MM/PBSA and the experimental values for (a) o-thrombin
inhibitors, (b) avidin, (c) cytochrome C peroxidase, (d) neuraminidase, (¢) P450cam, and (f) penicillopepsin.

and the binding free energy ranges relatively narrowly (—3.85
to —7.07 kcal/mol). Moreover, the force field parameters used
for the heme group and the radii used in the PB calculations
for the Fe ion are not as accurate as those for other molecules.
Similar to cytochrome C peroxidase, P450cam has a heme
group in the binding pocket. The prediction on P450cam is
better due to the following reasons. First, the binding free
energies of the P450cam inhibitors fall into a wider range,
from —5.5 to —11.8 kcal/mol. Second, the P450cam inhibi-
tors are hydrophobic. The relatively small contribution of

the electrostatic and polar solvation energy to binding
effectively reduces the magnitude of fluctuations.

Compared with avidin and neuraminidase, the other two
systems, a-thrombin and penicillopepsin, are more challeng-
ing because their ligands have quite diverse chemical
structures (Figure S1 in the Supporting Information). With
respect to the correlation coefficient, the prediction for
o-thrombin is satisfactory. It should be noted that in Figure
la the data are not evenly distributed, and one sample (a5,
benzamidine) deviates from the others significantly. In order
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Table 1. Experimental and the Calculated Binding Free Energies (kcal/mol) Using MM/PBSA for the Six Protein—Ligand Systems

No. AE, 4w AE. AGpp AGsa

AEq+AGpg

AE, 4w +AGsa TAS AGey. AGexp.

a-thrombin (g, = 4)

al —58.86 £ 1.09° —437+0.24 13.66 £0.29 —7.61 £0.17
a2 —62.42 £ 1.69 —3.64 +£2.36 1429 £1.72  —=7.65+£0.03
a3 —52.69 £ 1.18 —2.15+0.27 11.32+£043 —6.68+0.24
a4 —50.58 £ 2.58 —0.46 + 0.07 858 £0.19 —642+£0.13
a5 —18.73 £0.24 —33.35+0.28 4456 £0.10 —2.79 £+ 0.00
a6 —57.79 £ 0.46 —18.08 £ 0.11 28.14 £0.09 —7.11£0.01
a7 —58.27 £ 0.17 —40.62 £ 0.06 5720 £0.21 —7.02£0.04

9.28 £+ 0.04 —66.47 £1.27 —2281£157 —3438+£035 —12.39
10.65 £ 0.64 —70.06 £1.72 —20.20£3.01 —3922+£4.09 —10.08

9.16 £0.16 —59.37+142 —20.01 £0.65 —30.19+£1.92 —8.92

8.12£0.12 57.00 £2.71 —1797+£1.06 —30.92+£1.53 —7.68
11.21 £0.38 —21.51£024 —15.50£0.82 520+£0.20 —3.98
10.06 £ 0.02 —64.80 £045 —2499+£1.73 —29.84+£220 —10.6
16.58 £ 0.28 —65.29 £0.13 —2253+033 —26.18£0.08 —11.57

avidin (g, = 1)

bl —=30.31 £0.30 —172.54+£4.72 177.89 £4.58 —4.21£0.01 535+0.14 —34.52+£0.31 —18.69+£022 —1048+039 —204
b2 —30.10 £ 0.83 —156.76 = 4.74 16742 +455 —4274+0.04 10.66 £0.19 —34.57+0.79 —20.44 £+ 0.65 —327+033 —143
b3 —28.80 £0.19  —16547£549 168.64 £2.62 —4.21+0.01 3.17 £2.86 —33.01 £0.17 —21.33+£043 —850£2.61 —14.0
b4 —40.31 £0.14 —28.99 £+ 0.50 5552 +£149 —555+£0.06 26.53+1.99 —45.86 £0.19 —17.64 £ 1.61 —1.87 £3.41 —8.8
b5 —28.52 +1.39 —21.67 +7.19 39.47 +£4.80 —4.094+0.04 17.80 +2.39 —32.61 £143 —15.19+1.03 0.37 £1.98 —8.2
b6 —25.53 £ 1.00 —21.97 £0.20 36.26 £ 1.36 —3.69+0.28 1429 £ 1.16 —29.22+£1.28 —14.30+ 1.61 0.63 +1.48 =5.0
b7 —11.99 £ 0.16 —25.11 £0.30 2823 +£0.06 —2.12+0.01 3.12+0.09 —14.10£0.16 —13.57 £1.08 2.59 +£0.83 —4.5
cytochrome C peroxidase (&, = 1)
cl —25.60 £0.02  —352.29 £0.21 36541 +0.32 —2.81+£0.01 13.12 £0.11 —2841+0.03 —1550+£0.09 —1529+0.14 —3.85
c2 —2584+£0.06 —354.14+0.11 363.18+0.80 —2.79£0.02 9.03 + 0.69 —28.63+£0.04 —1687+1.10 —19.60+£0.73 —4.78
c3 —17.90 £ 0.91 —361.70 £3.03 369.11 £10.1 —1.93+043 741 £7.09 —19.82 £ 1.34 —1453+0.06 —12.41 +8.43 —4.81
c4 —22.28 £0.15 —353.88 + 1.88 364.08 £3.20 —2.62+0.00 10.20 £ 1.32 —2490+0.16 —1505+1.02 —1470+1.16 —5.86
c5 —18.07 £0.07 —365.62+6.40 37783 +2.66 —247+0.02 12.21+3.74 —20.53+£0.05 —13.19+1.28 —8.32£3.79 —3.96
c6 —17.74 £ 048  —377.44+0.95 381.86+1.05 —2.86+0.44 4.42 £0.09 —20.60 £0.05 —15.63+£0.03 —16.18+£0.05 —6.00
c7 —17.94 £0.12  —372.64 £3.54 37695+3.28 —240+0.01 431 £0.26 —20.34 +£0.12 —1573£0.04 —16.02+0.38 —5.99
c8 —21.33 £0.03 —360.68 +2.15 37432 +2.77 —2494+0.00 13.64 £0.62 —23.83+£0.03 —1550+040 —10.19+0.59 —4.96
c9 —17.09 £ 0.41 —372.32+1.53 371.754+0.19 —2444+0.00 —0.57+1.73 —19.52+ 041 —15444+0.14 —20.09 £ 1.31 —5.21
cl0  —20.72 £0.31 —372.36 £0.79 37673 £2.16 —3.294+043 437 £1.37 —24.01 £0.74 —1545+2.08 —19.64£2.11 —4.92
cll  —21.89+£0.08 —363.77+3.15 37083 +3.33 —2.64+0.01 7.06 £0.19 —24.53+£0.06 —1450+033 —1747+0.25 —4.92
cl2 —1840+£0.08 —379.84 £2.79 380.67+249 —2.48 +0.00 0.83 + 0.30 —20.88 £0.08 —14.39+0.48 —20.05£0.38 —=7.07
cl3 —16.64 £0.04 —381.35+2.81 38224+3.07 —2.78+042 0.89 £0.26 —1942+046 —13.81 £031 —18.54+0.72 —5.02
cld  —1934£0.12 —366.62+1.23 367.85+0.56 —2.62+0.00 1.22 + 0.66 —21.96 £0.12 —1522+093 —20.74 £0.55 —4.73
cl5 —11.42+0.03 —372.89 £ 0.16 365.15+0.18 —2424+044 —7.73+£0.01 —13.84 £ 042 —12.09£029 —21.57+0.43 —4.33
cl6 —1583+0.06 —375.74+2.87 37548+1.02 —-226+000 —0.26+1.86 —18.09 £0.06 —15.19+0.04 —1835+1.91 —5.82
cl7 —1635+£000 —37052+142 367.86+032 —2344+0.00 —2.66%+ 1.10 —18.69 £0.01 —14.95+0.68 —21.34+1.11 —5.94

cl8 —15.64£0.13 —369.60 £2.73  369.33 £0.75 —2.35+0.01

—0.27 £3.47 —17.980.14

—1693 £0.07 —18.25+1.32 —6.06

neuraminidase (&, = 4)

0.27 £ 0.49 —26.61 £0.08 —21.97£1.02 —4.37£1.59 —4.09
—1.55+£0.36 —27.60 £0.59 —15.78 £2.65 —13.36+2.88 —7.23
1.48 +£0.97 —25.64 £0.17 —21.54 £0.07 —2.62+0.72 —3.74
3.06 £ 0.01 —26.49 £0.53  —20.75 £2.30 —2.68 £ 2.84 —4.84
1.92 + 0.60 —24.71 £0.68 —19.03 £ 0.08 —3.75+1.20 —6.61
430 £ 1.49 —3339£0.05 —19.29£1.83 —9.80+326 —10.2
6.11 +0.45 —32.81 £1.55 —22.86£2.01 —3.84 £0.05 —7.73
598 £0.18 —3392+046 —17.72£2.16 —1022£189 —1145

P450cam (g, = 1)

12.68 £ 0.83 —30.35+0.03 —15.25+0.85 —2.43 £0.01 —=7.90
13.09 £0.52 —30.27 £0.25 —16.63 £0.62 —0.56 £ 0.15 —591
16.92 £ 0.90 —3241+£024 —1445£1.76 —1.04 £2.42 —6.54
10.84 £ 0.40 —23.14£0.03 —15.04 £0.27 2.74 £ 0.63 —5.57
13.69 £ 0.57 —23.50£0.78 —14.40 £0.32 4.60 £ 0.11 —5.52
13.89 £ 1.96 —31.25+£035 —1531£0.54 —2.04 £ 1.06 —5.93
16.29 £0.51 —32.80 £0.10 —13.24£0.42 —3.36 £0.83 —7.53
12.62 4 0.04 —28.96 £ 0.51 —13.99 £ 0.56 —2.34+0.01 —5.90
14.11 £0.01 —31.23 £0.10 —15.10 £ 0.60 —2.03 +£0.69 —7.40

penicillopepsin (&, = 2)

d1 —22.63 +£0.30 —29.30 £ 0.41 29.57 £0.89 —3.99+£0.38
d2 —22.95 £ 0.57 —33.69 £ 1.21 32,14 +£0.84 —4.65+0.03
d3 —21.19 £0.17 —26.07 & 0.54 27.55+£043 —4.45+£0.00
d4 —21.84 £0.52 —22.36 £0.17 2543 £0.18 —4.64 £0.01
ds —20.12 £ 0.64 —23.62 +0.04 25.55+0.64 —4.58+0.04
de —28.40 £ 0.03 —22.53 £3.39 26.83 £1.90 —4.99£0.03
d7 —27.83 £0.38 —3.53£0.35 9.44£080 —498+1.16
ds —29.43 £ 0.01 —13.36 = 0.42 19.34 £0.24 —4.49 £ 047
el —27.57 £ 0.61 —9.10 £ 0.27 21.78 £0.57 —2.78 £ 0.58
e2 —26.94 £ 0.28 —0.14 + 0.04 1322 +£0.56 —3.33 +£0.03
e3 —29.03 £0.24 —8.59 £0.12 25,51 £0.79 —3.38£0.00
e4 —20.35 £ 0.05 —1.85£0.10 12.69 £0.50 —2.79+0.02
e5 —21.13 £0.24 —0.23 £0.08 13.92 £0.50 —2.37£0.55
eb —27.68 £ 0.36 —9.02 £2.34 2291 £038 —3.56+£0.01
e7 —29.42 £ 0.10 —4.32£0.16 20.62 £0.68 —3.48+0.01
e8 —26.36 & 0.04 —0.03 £ 0.01 12.65+0.03 —2.60 + 0.55
e9 —28.09 £ 0.11 —2.87 £0.07 16.98 £0.08 —3.15+0.01
f1 —50.93 £ 1.01 —32.01 £2.12 5990 £1.36 —8.59£0.00
2 —41.34 £ 1.58 —17.23 £3.30 3594 +£0.53 —6.78+£0.18
f3 —48.82 £ 1.24 —33.58 £0.82 4829 £1.66 —7.34+0.13
4 —40.62 £ 2.30 —25.06 &+ 3.58 5178 £1.11  —6.79 £0.29
5 —38.63 £4.78 —7.32 £ 0.62 23.49+496 —548+0.85
f6 —42.23 £4.33 —8.76 & 0.99 2645 £3.94 —6.60 £0.05
{7 —45.28 £2.23 —15.07 £2.75 3459+£531 —7514+£048

27.89 £ 3.48 —59.52£1.02 —2243£1.30 —9.20£320 —12.83
18.70 + 3.83 —48.12+1.76  —22.01 £0.44 =741 +1.62 —10.51
14.71 £0.84 —55.16 £1.37 —2489+£0.64 —1557+£1.16 —12.27
26.72 £2.47 —4741£259 —16.09£152 —14.60£245 —1091
16.17 £ 4.34 —44.10 £5.63  —20.06 £ 0.16 —7.87+ 145 —8.37
17.69 £ 2.96 —4883 £4.28 —21.31£0.23 —9.83 £ 1.09 —7.03
19.52 £ 2.56 —52.79 £2.72 —23.67£2.29 —9.60 £ 2.13 —6.80

“ The statistical error was estimated on the basis of the deviation between block averages.

to estimate the capability of MM/PBSA to rank the binding
affinities of the candidate molecules, the Spearman correla-
tion coefficient (), which calculates the correlation between
two sets of rankings, has been calculated for the o-thrombin
inhibitors. However, the low Spearman correlation coefficient
of 0.29 means that the predictions from MM/PBSA cannot
give effective ranking for the studied molecules. The
calculated binding free energy for a5 is unfavorable (5.20
kcal/mol) compared with that of other ligands. If we exclude

benzamidine in correlation, the correlation coefficient will
decrease from 0.81 to 0.01. In summary, for this case, MM/
PBSA did not make reliable predictions for ligands with
diverse structures. Ligands a5 and a7 are positively charged
in neutral aqueous solution, while al to a4 do not have
charged centers. Ligand a6 has two charged centers, but its
net charge is zero. The charged states of a5 and a7 might be
the essential reason for the poor predictions. The polarization
of the charged molecules to the binding interface is quite
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Table 2. The Correlation Coefficients and Unsigned Mean Errors
(UMESs) Using Different Solute Dielectric Constants in the MM/
PBSA Calculations

Ein — 1 Ein — 2 Ein — 4

r UME r UME r UME
a-thrombin 0.45 2326 0.69 13.83 0.81 19.81
avidin 092 7.63 0.67 385 051 4.99
cytochrome C peroxidase 0.27 3.62 0.00 2.88 —0.33 4.51
neuraminidase —0.20 13.83 0.28 6.15 0.68 2.26
P450cam 0.72 586 0.69 276 0.68 5.13
penicillopepsin 0.29 19.87 041 284 032 10.09

different from the neutral ones. Therefore, it is necessary to
use different solute dielectric constants to characterize the
local environment of the binding interfaces. With the same
parameters for all ligands, the systematic errors associated
with different types of ligands cannot be canceled efficiently.

The correlation coefficient (r = 0.41 at &,= 2) indicates
that the prediction for the penicillpepsin system is not
satisfactory either. Although the charged state of all peni-
cillpepsin ligands was the same, diverse chemical structures
still led to unsatisfactory predictions.

In summary, we found that MM/PBSA achieved satisfac-
tory performance on ligands with similar chemical structures,
such as in the cases of avidin and P450. For ligands with
diverse structures such as those of o-thrombin and penicil-
Ipepsin, the accuracy of MM/PBSA calculations varied
between systems.

2. Impact of the Value of the Solute Dielectric
Constant. In MM/GBSA or MM/PBSA, the dielectric
constant (&;,) of unity (1.0) is normally used for solute. But
for macromolecules, especially for the highly charged binding
interface, higher ¢, values are used for considering the
electronic polarization effect. We have compared the binding
free energies computed using three different solute dielectric
constants, 1.0, 2.0, and 4.0. The correlation coefficients
between the calculated binding free energies and the
experimental data are listed in Table 2. It is obvious that the
predictions are sensitive to the value of solute dielectric
constant. For example, for the avidin system, &;,, = 1 made
the best correlation (r = 0.92), which was much better than
those using &, = 2 or 4 (r = 0.67 or 0.51). For the six
systems studied here, if the correlation between the experi-
mental binding free energies and the predicted value was
used as the criterion, &,= 1 performed best for avidin,
cytochrome C peroxidase, and P450cam; ¢;,= 2 performed
best for penicillopepsin; and ¢;,= 4 performed best for the
other two systems, neuraminidase and o-thrombin. One thing
we need to point out is that MM/PBSA and MM/GBSA are
usually used to rank the binding affinities for some systems
rather than give accurate predictions of the absolute binding
free energies. Here, we used the single trajectory protocol
to estimate the total binding free energies, and the changes
of the conformational energy for the ligand and protein upon
ligand binding were not included. So it is reasonable that
the prediction will be quite different from the true values.

The unsigned mean errors (UMEs) of the predictions are
listed in Table 2. The lowest UME was coincident with the
highest correlation coefficient in the cases of cytochrome C
peroxidase, neuraminidase, and penicillopepsin. Therefore,
an optimal solute dielectric constant is not only important
for ranking ligands but also for calculating the absolute

Hou ET AL.

ARG2%4 {fs
ARG372

ARG119

Figure 2. The 3-D structure of the neuraminidase binding site. The
ligand d1 is shown in ball-and-stick representation. The Arg residues
are shown in green stick representation, and the Glu and Asp
residues are shown in purple stick representation. The three Arg
residues that can form strong ion—ion interactions with ligands are
labeled. The figure was generated using the Discovery Studio
molecular simulation package.®

binding free energies. For the six systems we studied, three
had a UME value with the best correlation lower than 4.0
kcal/mol, one between 5.0 and 6.0 kcal/mol, one between
7.0 and 8.0 kcal/mol, and one larger than 19 kcal/mol. These
relatively large UMEs compared with the binding free
energies suggested that absolute binding free energy calcu-
lated by MM/PBSA usually has a large deviation from the
experimental values, although it made reasonable predictions
for some systems.

Unfortunately, there is no universal dielectric constant
suitable for all six protein systems. We thus investigated the
inhibitor/protein binding interfaces in order to find a possible
way to choose an optimal solute dielectric constant.

For neuraminidase, &,= 4 made the best predictions.
Neuraminidase has a highly charged binding pocket (Figure
2), characterized by nine charged residues, including five
Arg’s (Argl19, Argl53, Arg226, Arg294, and Arg372; net
charge is +1), three Glu’s (Glul20, Glu278, and Glu279;
net charge is —1), and one Asp (Asp152; net charge is —1).
More importantly, three charged residues (Argl 19, Arg294,
and Arg372) can form strong ion—ion interactions with the
negatively charged center of the ligand.’® Therefore, a
relatively larger value of the solute dielectric constant is
justified to consider the strong electronic polarization of the
binding interface. This observation is consistent with the
previous studies for the predictions of the ligand/DNA
system, where ¢;, = 4 was shown to be a better choice than
lower values.’’

For a-thrombin, &,= 4 also achieved the best correlation
coefficient (r = 0.81). But as noted above, the high
correlation was due to the unbalanced distribution of the
ligand samples. It is not conclusive whether &, = 4 is the
best choice for all a-thrombin ligands. The binding pocket
of a-thrombin includes three charged residues, Aspl89,
Aspl194, and Glu217. Strong ion—ion interactions were found
between Asp and the positively charged center of a5/a7 in
the crystal structures. In contrast, no ion—ion interactions
were found between the protein and the ligands al~a4. It is
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Figure 3. The correlation between the best performed solute dielectric constants and the PSASAD values for six complexes, o-thrombin/
al, avidin/bl, cytochrome C peroxidase/cl, neuraminidase/d1, P450cam/el, and penicillopepsin/fl. PSASAD was calculated on the basis
of a cutoff of (a) 5 A or (b) 6 A to define polar/polar interactions between the protein and the ligand. In this figure, the solute dielectric
constant ¢, is 1 for avidin, cytochrome C peroxidase, and P450cam; 2 for penicillopepsin and o-thrombin; and 4 for neuraminidase. For
a-thrombin, &,= 4 is chosen on the basis of the correlation coefficient; but as noted in the text, &,= 1 or 2 may be a better choice for

ligands al to a4.

questionable to use a universal solute dielectric constant to
characterize the complicated binding interfaces of the
o-thrombin complexes. The calculated binding free energies
for the a-thrombin ligands based on &, = 1 and ¢;, = 2 are
listed in Table S2 in the Supporting Information, and those
based on ¢&,= 4 are listed in Table 1. As shown in Table
S2, &, = 1 or 2 is a good choice for ligands al to a4, but
not for ligands a5 and a7. It is clear that ligands a5 and a7
prefer a larger dielectric constant. When ¢&;, = 1, the predicted
binding free energies for a5 and a7 are very positive, and
they are only marginally positive when ¢, = 4. In the a5/
a-thrombin complex, strong ion—ion interactions are ob-
served between a5 and Asp189, and a crystal water molecule
is observed to mediate the interactions between a5 and
Phe227. The strongly polarized binding interface of protein/
a5 needs to be characterized by a high &;, value. Therefore,
the solute dielectric constant is not only dependent on the
target protein but also on the ligand. Even for the same target
protein, different ¢;, values may be necessary to characterize
different target-ligand binding interfaces. According to the
UMEs, maybe ¢;, = 2 is a better choice than ¢;, = 4.

For penicillopepsin, €;, = 2 is a good choice. In the binding
site of penicillopepsin, one negatively charged residue,
Asp77, is observed to form strong ion—ion interactions with
the positively charged center of the inhibitors.

For avidin, P450cam, and cytochrome C peroxidase, &,
= 1 showed the best performance. For avidin, no charged
residues are found in the binding pocket. For cytochrome C
peroxidase, one charged residue (Asp235) is found in the
binding pocket, but no ion—ion interactions were found
between the protein and the ligands. Similarly, for P450cam,
the binding pocket has one charged residue (Asp297), but
no ion—ion interactions were found between P450cam and
ligands.

On the basis of our analysis, a high solute dielectric
constant, such as 4, is usually recommended when the

binding interface is highly charged; for example, several
charged residues exist in the binding pocket and especially
strong ion—ion interactions are formed between the protein
and the ligand. When the binding interface is moderately
charged, for example, two or three charged residues exist in
the binding pocket or effective ion—ion interactions are
formed between the protein and the ligand, a moderate solute
dielectric constant, such as 2, is preferred. When the binding
pocket is hydrophobic and no ion—ion interactions are
formed between the protein and the ligand, the solute
dielectric constant of 1 is the best choice.

Obviously, the solute dielectric constant is directly deter-
mined by the binding interface. Therefore, we characterized
the interface properties, and studied the quantitative relation-
ships between the interface properties and the values of the
solute dielectric constant. The interface properties were
characterized by the following steps: (1) Define the strong
polar/polar interaction pairs between the protein and the
ligand. In the calculations, O, N, and S were defined to be
the polar atoms. If the distance between a polar protein atom
and a polar ligand atom is less than a cutoff (5 or 6 A was
used here), the interactions for this polar/polar atom pair are
assumed to be strong. (2) Calculate the solvent accessible
surface area (SASA) for each complex and the corresponding
uncomplexed protein using the MSMS program with a probe
radius of 1.4 A.°® The SASA difference (SASAD) of the
protein is the interface area. (3) Calculate the total SASAD
for the protein atoms which were found in the strong polar/
polar interaction pairs (defined as PSASAD). Figure 3 shows
the correlations between the PSASAD and the dielectric
constants for the six protein/ligand systems. Good correlation
can be observed. It suggests that PSASAD may be a useful
measurement to help choose the solute dielectric constant
in the MM/PBSA calculations. Here, we only analyzed six
protein/ligand systems. There is no doubt that further studies



76 J. Chem. Inf. Model., Vol. 51, No. 1, 2011

Hou ET AL.

Table 3. The Correlation between the Experimental and the Calculated Binding Free Energies Using Three Different Lengths of MD

r0.2-3 ns

b
To2—4ns  T02-5ns  T1-3ns T'1-5ns -5 ns 735 ns sd

Simulations®
702-06ns  T02-1ns  T02-2ns
a-thrombin en =1 0.60 0.58 0.54
&n =2 0.81 0.80 0.77
en =4 0.91 0.90 0.87
avidin en =1 0.93 0.95 0.92
&n =2 0.78 0.80 0.77
en =4 0.64 0.66 0.66
cytochrome C peroxidase &, = 1 0.07 0.20 0.30
&n =2 —0.10 —0.01 0.08
en =4 —0.19 —-0.16 —0.13
neuraminidase gn =1 —0.26 —0.35 —0.42
&n =2 0.36 0.11 0.06
en =4 0.78 0.65 0.65
P450cam en =1 0.49 0.43 0.59
&n =2 0.63 0.59 0.65
en =4 0.67 0.63 0.65
penicillopepsin &in = 1 0.29 0.26 0.25
&n =2 0.37 0.35 0.35
en =4 0.35 0.34 0.33

0.52 0.50 0.49 0.49 0.47 0.46 045 0.050
0.73 0.72 0.71 0.70 0.69 0.68 0.68 0.048
0.85 0.84 0.83 0.82 0.81 0.80 0.80  0.039
0.86 0.87 0.89 0.80 0.87 0.87 092 0.044
0.74 0.73 0.74 0.71 0.73 0.73 0.75 0.027
0.63 0.62 0.63 0.62 0.62 0.61 0.62 0.017
0.27 0.25 0.19 0.26 0.17 0.12 0.08 0.081
0.06 0.05 0.03 0.08 0.04 0.01 0.01  0.053
-0.14 -0.14 —-0.13 -0.14 —-0.13 —-0.13 —0.11 0.022
-039 —-038 —042 —-038 —041 —039 —042 0.048
0.08 0.10 0.04 0.07 0.03 0.04 0.00 0.101
0.62 0.60 0.54 0.58 0.50 0.45 042 0.107
0.56 0.53 0.57 0.59 0.58 0.54 0.57 0.051
0.61 0.60 0.62 0.61 0.62 0.60 0.63 0.018
0.61 0.61 0.62 0.61 0.61 0.59 0.62 0.023
0.23 0.21 0.21 0.22 0.21 0.19 0.20  0.031
0.34 0.33 0.33 0.33 0.33 0.32 0.32  0.016
0.32 0.32 0.31 0.32 0.31 0.30 0.30 0.016

“The entropy term was not included in the total binding free energy for correlation analysis. ? sd represents the standard deviation of the 10

correlation coefficients.

are necessary to correlate the relation between the interface
properties and the values of the solute dielectric constant.

3. Impact of the Length of MD Simulations. In order
to investigate the influence of simulation length on
predictions, we conducted a comparative study of free
energy calculations by using 10 different lengths of MD
simulations: 0.2—0.6 ns (50 snapshots), 0.2—1.0 ns (100
snapshots), 0.2—2.0 ns (225 snapshots), 0.2—3.0 ns (350
snapshots), 0.2—4.0 ns (475 snapshots), 0.2—5.0 ns
(600 snapshots), 1.0—3.0 ns (250 snapshots), 1.0—5.0 ns (500
snapshots), 2.0—5.0 ns (375 snapshots), and 3.0—5.0 ns (250
snapshots). The correlations between the experimental bind-
ing free energies and the predicted values and the standard
deviations of the 10 correlation coefficients are summarized
in Table 3. The standard deviations of four systems, including
a-thrombin, cytochrome C peroxidase, neuraminidase, and
P450cam, are larger than 0.05; that is to say, for these four
systems, the length of MD simulations shows obvious
impacts on the predictions. Moreover, it is interesting to
observe that extending the simulation time does not always
improve the correlations between the predicted binding free
energies and the experimental values. For some systems, such
as neuraminidase, the predictions based on relatively short
MD simulations are even slightly better than those based on
longer MD simulations. After comparing the 75— s and
the rg,—s s values, we found that for four systems, including
o-thrombin, avidin, neuraminidase, and penicillopepsin, the
predictions based on the much longer MD simulations (4.8
ns) are obviously worse than those based on the shorter MD
simulations (400 ps). It should be noted that in the com-
parison of predictions for different lengths of MD simula-
tions, the snapshots were even extracted, and then the
numbers of snapshots for different MD simulations were
different. In order to check the effect of different numbers
of snapshots for the same MD simulation length, we
compared the predictions based on 600 snapshots from
0.2—6.0 ns and those only based on 100 snapshots from
0.2—6.0 ns. According to our calculations, the two predic-
tions yield the same correlation coefficients. That is to say,

instead of using 600 snapshots, 100 snapshots can also
generate stable predictions.

The time evolutions of the RMSD values for the six avidin/
ligand systems are shown in Figure 4. The initial structures
for these six complexes were manually modeled, which
justified the longer MD equilibration. The RMSD plots
indicate that among all six of these avidin/ligand systems,
avidin/b5 achieved equilibrium after about 1.5 ns, and avidin/
b6 achieved equilibrium after about 200 ps. Some of them,
such as b3, b4, and b7, seemingly did not reach equilibrium
throughout the entire MD simulations. The fluctuations of
enthalpies for these six avidin/ligand complexes are shown
in Figure 5. In order to assess the convergence of the
enthalpy, the cumulated mean values are also shown in
Figure 5. The enthalpies are quite variable, but the averaged
values became stable quickly after a short length of MD
simulations for most cases (b4 to b7). The comparison
between Figures 4 and 5 shows that the conformations of
the avidin complexes are continuously tuned to be more
stable, but the interaction between the ligand and the protein
is not so sensitive to this fine conformational adjustment. It
is well-known that effective sampling is coupled with a good
force field. When the force field is not precise enough, long-
time conformational collection is also not meaningful.
Therefore, long MD simulations do not necessarily lead to
accurate binding free energy calculations when the single-
trajectory protocol is used.

4. Impact of the Conformational Entropy. In order to
investigate the impact of the conformational entropy on
calculating relative binding free energies, we compared the
correlations between the calculated and the experimental
binding free energies with and without including the con-
formational entropy term (Tables 2 and 4). We found that
the inclusion of the entropy term did not always improve
the prediction accuracy, as shown in the cases of a-thrombin,
avidin, and cytochrome C peroxidase. For the other two
systems of neuraminidase and P450cam, considering con-
formational entropy obviously improved the correlations. For
penicillopepsin, the inclusion of the entropy term only
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Figure 4. The RMSD values in the MD trajectories of the six avidin/ligand complexes.

improved the correlations slightly. This observation is
consistent with many previous studies conclusions that,
without considering conformational entropy, MM/PBSA
could still achieve satisfactory accuracy of ranking ligand
affinities.

In this study, normal-mode analysis (NMA) was used to
estimate conformational entropy. Although widely used,
NMA is not perfect due to not considering anharmonic
effects. One observation from our calculations is that the
calculated entropies fluctuate significantly between MD
snapshots (Figure 6). Such a large fluctuation is usual for
the vibrational entropies computed by NMA.?'*° Large
fluctuations in entropy predicted by NMA may arise from
the mismatch between the minimized geometries of the
complex and of the receptor or ligand.”® Therefore, a large
number of snapshots is needed to obtain stable predictions.

As noticed in many previous studies as well as in the
current study, the success of MM/PBSA relies on the
cancellation of errors in individual energy components.
Limited by the computational cost of normal-mode analysis,
we took 45 snapshots for conformational entropy estimation,
far less than the 200 snapshots used in enthalpy calculation
when we calculated the binding free energies using the single
trajectory from 0.2 to 2.0 ns. It is possible that the fluctuation

of entropy is synchronized with other terms and errors cannot
be canceled when using different set of snapshots. Therefore,
we did another test by calculating the enthalpic and entropic
contributions by using the same 40 snapshots. The correla-
tions between the predicted and the experimental binding
free energies are similar with or without entropies when
compared with the corresponding values shown in Tables 2
and 4. This observation of no improvement of correlation
implied that the errors of normal-mode analysis probably
did not get canceled with other terms. However, we need to
emphasize that the single trajectory approach may not be a
good choice for the estimates of the conformational entropy.
If the difference between the ligand free in solution and when
it is bound to the protein is significant, the prediction error
may be significant. Moreover, as shown in Figure 6, the
entropy shows larger fluctuation; we must emphasize that
the estimation of conformational entropy based on 45
snapshots may not be enough to get converged predictions
for some systems.

5. Comparison between MM/PBSA and MM/GBSA.
The PB model is theoretically more rigorous than the GB
models, and MM/PBSA is often considered to be naturally
superior to MM/GBSA for predicting binding free energies.
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Figure 5. The fluctuations and the accumulated mean values of enthalpies for the six avidin/ligand complexes.

Table 4. The Correlations between the Enthalpies and the
Experimental Binding Free Energies

Ein = 1 Ein = 2 Ein =
o-thrombin 0.54 0.77 0.87
avidin 0.92 0.77 0.66
cytochrome C peroxidase 0.30 0.08 —0.13
neuraminidase —0.42 0.06 0.65
P450cam 0.59 0.65 0.65
penicillopepsin 0.25 0.35 0.32

Here, we compared the performance of these two methods
on ranking binding affinities of the six protein—ligand
systems.

The three GB models examined in this study were the
pairwise GB model developed by Hawkins et al. (GBHCT)3>53
and two modified GB models developed by Onufriev et al.
(GBOBC! and GB©B®2),5° which were implemented in the
AMBER software package. On the basis of the correlation
coefficients between the calculated and the experimental
binding free energies, GB®BC! performed better than the other
two GB models (Table 5).

Another interesting observation is that the performances
of GBOBC! and GB9B“? were quite different. The theoretical

frameworks of GBPBC! and GB®®®? are the same, and the
only difference between the two models is the values of three
parameters for calculating the inverse of the effective Born
radii. The performance of these two GB models on MD
simulations tested on several proteins were comparative in
the previous studies,’” although further tests on an extensive
set of protein structures revealed that GB®®®? agreed better
with PB in calculating the electrostatic solvation free
energy.®® For the six protein—ligand systems studied here,
GBOBC! performed better than GB°B? obviously. GBOB¢?
and GB©BC! gave comparative predictions for avidin, and
GBO©8? performs better than GB®5¢! on cytochrome C
peroxidase. But for the other four systems, GBB¢! gave
much better predictions than GB°B2, Overall, our calcula-
tions showed that the GB®BC! model was the most accurate
one among the three GB models to calculate binding free
energies.

The predicted binding free energies and the corresponding
energy terms calculated by MM/GBSA based on GB®E¢! are
listed in Table S3 in the Supporting Information. Same as
the results of Gohlke and Case,?® the electrostatic solvation
energy computed by GB was consistently larger than that
computed by PB, leading to lower binding free energy (Table
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Figure 6. The fluctuations and the accumulated mean values of entropies for the six protein—ligand systems.
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Table 5. The Correlations between the Experimental and Calculated Binding Free Energies Using Three Different GB Models and Three

Different Solute Dielectric Constants

GRBHCT GBOBC! GBOBC2

sin:1 Sin:2 ein:4 ‘E‘in:1 ein:2 ein:4 ‘E‘in:1 ‘E\in:2 Sin:4

a-thrombin 0.58 0.88 0.90 0.71 0.91 0.90 0.73 0.78 0.83
avidin 0.78 0.49 0.37 0.93 0.73 0.49 0.92 0.91 0.77
cytochrome C peroxidase 0.17 —0.11 —0.27 0.21 —0.04 —0.48 0.35 0.22 —0.41
neuraminidase 0.21 0.55 0.78 —0.15 0.20 0.60 —0.16 —0.02 0.24
P450cam 0.61 0.65 0.66 0.58 0.63 0.65 —0.42 -0.37 —0.21
penicillopepsin 0.51 0.62 0.65 0.68 0.73 0.74 0.23 0.40 0.55

S3 and Table 1). The possible reason is that the PARSE radii
are on average smaller than the modified Bondi radii, which
in turn leads to the dielectric boundary being closer to the
charge center.”” The unsigned mean errors of the predicted
binding free energies given by MM/GBSA were 21.31 kcal/
mol for a-thrombin, 9.30 kcal/mol for avidin, 5.62 kcal/mol
for cytochrome C peroxidase, 4.42 kcal/mol for neuramini-
dase, 6.07 kcal/mol P450cam, and 10.58 kcal/mol penicil-
lopepsin. These values were larger than those given by MM/
PBSA (Table 2). Namely, MM/PBSA performed better than

MM/GBSA on calculating the absolute binding free energies
for the six protein—ligand systems.

We also examined the performance of MM/PBSA and
MM/GBSA to rank binding affinities of ligands, which is
often more important in many applications such as drug
design than the absolute binding free energies. As shown in
Table 5, MM/GBSA based GB?BC! gave better correlations
than MM/PBSA for two systems, a-thrombin and penicil-
lopepsin; MM/GBSA based on GBHCT gave better correla-
tions than MM/PBSA for neuraminidase. For avidin, the
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correlations given by MM/GBSA and MM/PBSA are similar.
For cytochrome C peroxidase and P450cam, the correlations
given by MM/PBSA were better. The poor predictions of
MM/GBSA for cytochrome C peroxidase and P450cam
might be due to the lack of accurate GB parameters for the
Fe ions. For the systems without metal ions in the binding
sites, the MM/GBSA calculations based on GBYB! per-
formed better than MM/PBSA to rank the binding affinities
of the ligands.

In this work, we observed that MM/GBSA gives better
correlations than MM/PBSA in most systems. In principle,
PB is more theoretically rigorous than GB, but it does not
mean that MM/PBSA can give better predictions than MM/
GBSA. Maybe two reasons can be used to explain the
observations. First, here, the Parse parameter set was used
to define the dielectric boundary. However, previous studies
have shown that the Parse parameter set cannot give good
predictions of solvation free energies for amino acid side
chain analogs and some relatively complicated functional
groups.®! Tt is well-known that the Parse radii are based
on the Pauling van der Waals radii.* In the Parse radii set,
each element is defined as an atom type. It is possible that
a single radius for an element is insufficient. For example,
the single radius for carbon works well for simple aliphatics,
while usually less well on heterocyclic and aromatic sys-
tems.*” It is necessary to develop more reliable radii for PB
based on a larger set of experimental data for a set of more
elaborately defined atom types. Second, the GB parameters
were usually fitted from the experimental values. The
prediction errors of GB can be well reduced by defining more
atom types.

CONCLUSIONS

In the present study, we have evaluated the performance
of MM/PBSA to calculate and rank the binding free energies
of 59 ligands for six different protein systems. Our results
showed that MM/PBSA gives good predictions for homolo-
gous ligands and has a variable performance for ligands with
diverse structures. We found that the MM/PBSA predictions
are very sensitive to the solute dielectric constant, which is
directly related to the characteristics of the binding interface.
In general, for a highly charged binding interface, a higher
solute dielectric constant (g, = 4) is preferred. For a
moderately charged binding interface, a moderate solute
dielectric constant (&;,, = 2) is preferred, and for hydrophobic
binding interface, a low solute dielectric constant (&, = 1)
is preferred. The optimal solute dielectric constant is critical
for different protein/inhibitor systems. We proposed a simple
measurement, called PSASAD, to guide the choice of this
important parameter. There is no doubt that further tests on
a larger data set are necessary to choose the most optimal
solute dielectric constant. Compared with the solute dielectric
constant, the predictions of MM/PBSA are less sensitive to
the length of MD simulations. However, the MD simulation
lengths still have an obvious impact on the predictions;
moreover, longer MD simulations are not always necessary
to achieve better predictions.

Our calculations showed that inclusion of the conforma-
tional entropy was crucial for predicting absolute binding
free energies but not for ranking the binding affinities of
similar ligands. Since the conformational entropy calculations
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showed large fluctuations, a large number of snapshots are
required for reliable calculations, and it is necessary to
develop more efficient methods to evaluate conformational
entropy.

Finally, we compared the MM/PBSA and the MM/GBSA
approaches. Three GB models were used to calculate the
electrostatic solvation energy, and they showed variable
performances. The GB model developed by Onufriev
(GB©B) gave better accuracy than the other two GB models
(GB9B€2 and GBHCT), Although MM/GBSA achieved worse
predictions for the absolute binding free energies than MM/
PBSA, it showed better performance at ranking the binding
affinities for systems without metals.
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