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GANDI (GeneticAlgorithm-based deNovo Design of Inhibitors) is a computational tool for automatic
fragment-based design of molecules within a protein binding site of known structure. A genetic algorithm
and a tabu search act in concert to join predocked fragments with a user-supplied list of fragments. A novel
feature of GANDI is the simultaneous optimization of force field energyanda term enforcing 2D-similarity
to known inhibitor(s) or 3D-overlap to known binding mode(s). Scaffold hopping can be promoted by tuning
the relative weights of these terms. The performance of GANDI is tested on cyclin-dependent kinase 2
(CDK2) using a library of about 14 000 fragments and the binding mode of a known oxindole inhibitor to
bias the design. Top ranking GANDI molecules are involved in one to three hydrogen bonds with the backbone
polar groups in the hinge region of CDK2, an interaction pattern observed in potent kinase inhibitors. Notably,
a GANDI molecule with very favorable predicted binding affinity shares a 2-N-phenyl-1,3-thiazole-2,4-
diamine moiety with a known nanomolar inhibitor of CDK2. Importantly, molecules with a favorable GANDI
score are synthetic accessible. In fact, eight of the 1809 molecules designed by GANDI for CDK2 are
found in the ZINC database of commercially available compounds which also contains about 600 compounds
with identical scaffolds as those in the top ranking GANDI molecules.

INTRODUCTION

The search for drug molecules with computational methods
is often performed by high-throughput docking or to a lesser
extent by de novo drug design approaches.1 While virtual
screening relies on pre-existing compounds, de novo design
approaches generate novel molecules out of building blocks
consisting of single atoms or fragments. Because of the
difficulty to predict synthetic accessibility, de novo drug
design tools often generate molecules that are demanding to
synthesize.2 Approaches that are commonly employed to
improve synthetic accessibility include the use of connection
rules to join building blocks3-5 or the build-up of molecules
from fragments obtained by prior decomposition of existing
compounds.6,7 Connection rules are either derived from
organic synthesis reactions3,4,8 or they are based on the
knowledge of the occurrence of certain bonds in existing
molecules.9,10 Several statistics of building blocks occurring
in known molecules have been collected.11-13 The RECAP
procedure by Lewell et al.14 is particularly interesting for de
novo drug design, because building blocks are generated by
decomposition of virtual libraries based on cleavage rules
inferred from organic synthesis reactions.

Global optimization algorithms are usually employed to
search the chemical space. Genetic algorithms15,16 (in
ADAPT,17 LEA3D,7 and LigBuilder10) and Monte Carlo-
based procedures (in SKELGEN,18 SMoG,19 and SPROUT6)
are able to sample rugged scoring function surfaces ef-
ficiently. Genetic algorithms are based on the theory of
natural selection,20 evolving multiple solutions concomitantly.
A new offspring is created with mutation and crossover
operators and is subject to selection subsequently. Monte

Carlo based procedures use the Metropolis criterion21 to
accept or reject transitions from one state to another.

Methods for estimating the free energy of binding of a
small molecule to a target protein, referred to as the scoring
problem in both docking and de novo design, can be roughly
divided into three families:22,23force field-based, knowledge-
based, and empirical approaches. As for high-throughput
docking, all of the three aforementioned methods have been
implemented in de novo drug design approaches (e.g., force
field-based in GroupBuild9 and CCLD,24 knowledge-based
in SMoG,19 and empirical in LigBuilder10). Additional factors
besides estimates of the binding strength are often considered
to ensure that drug- or leadlike molecules are generated. The
use of multiple scoring functions or the additional application
of constraints on the design process is referred to as
multiobjective optimization. Among the various ways of
combining individual scores, the weighted-sum approach25

is often used.8,17,18Individual scores are multiplied by user-
defined coefficients and summed up to yield the total score.
Applications of de novo drug design programs resulting in
the identification of novel inhibitors against different proteins
have been reported.26-29

Here, a novel approach forGeneticAlgorithm-based de
Novo Design ofInhibitors (GANDI) is presented. GANDI
is a fragment-based method that generates molecules by
joining predocked fragments with linkers. A parallel genetic
algorithm30 employing the simultaneous evolution of multiple
populations is used in GANDI to search for feasible
solutions. To increase the selection pressure a different form
of elitism is implemented, where both the parent and the
children populations compete for their survival. Only the
predocked fragments are encoded by the genetic algorithm,
while suitable linker fragments are efficiently evaluated with
a tabu search31-33 using look-up tables. The cost function in
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GANDI is a novel combination of force field energyanda
measure of the 2D-similarity to known inhibitor(s) or 3D-
overlap to known binding mode(s). The energy term consists
of intra- and intermolecular contributions. The 2D-similarity
term is the Tanimoto coefficient34 with 2D-fingerprints as
variables. The measure of 3D-overlap enforces a spatial
distribution of the atoms of the designed molecule similar
to the one in the known binding mode of the inhibitor(s)
without explicitly considering the covalent structure. Scaffold
hopping (that is to say design of isofunctional molecular
structures with significantly different backbones) is facilitated
by overweighting the 3D-overlap measure and at the same
time maintaining structural diversity in the population of

molecules during genetic algorithm optimization. GANDI
is evaluated on cyclin-dependent kinase 2 (CDK2), present-
ing a complex optimization problem due to the large number
of fragments used. Different optimization algorithm setups
are analyzed for their search efficiency. Notably, GANDI is
able to suggest molecules with new scaffolds or substituents
that, at the same time, preserve the main binding interaction
motifs of known inhibitors of CDK2.

METHODS

Overall Procedure.To connect predocked fragments with
linker fragments (Figure 1, top), GANDI uses a combination
of two stochastic search procedures, a genetic algorithm,15,16

Figure 1. (Top) Schematic illustration of GANDI. Molecules are generated by linking predocked fragments (black) using a list of user-
supplied linker fragments (red). The protein surface and its polar groups are in blue. (Bottom) Flow chart of GANDI. The flow is top to
bottom and includes two iterative procedures, which are the main loop of the genetic algorithm and the random tabu search embedded
within it (arrows on the right).
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and a tabu search.31-33 Heavy atom-hydrogen atom vectors
are the connection points, which can be selected by the user.
Covalent bonds generated by GANDI for linking fragments
are single bonds. The scoring function is a linear combination
of three terms with multiplicative parameters as input. A flow
chart of GANDI is given in Figure 1, bottom.

Genetic Algorithm for Global Optimization. The genetic
algorithm in GANDI is an island (or parallel) model, using
the simultaneous, noninteracting evolution of multiple popu-
lations at the same time.30 The exchange of genetic material
is performed after a certain amount of optimization iterations
by swapping individuals (i.e., molecules) between neighbor-
ing, all, or randomly picked islands (Supporting Information
Figure S1). Every individual contains a single chromosome
consisting of multiple genes. Contrary to classic genetic
algorithms, the implementation in GANDI uses integers as
gene values encoding indexes of docked fragments. Hence,
the value of each gene ranges from one to the number of
docked poses. Individuals are selected from the parent
population with binary tournament selection35 to undergo
modifications. One-point crossing over is accomplished by
swapping genes at a single randomly chosen chromosome
position. Genes are selected and mutated by a random integer
derived from a normal distribution with adjustable width.
The encoded fragments of the “children” are examined for
clashes, and individuals with unfavorable interactions are
immediately removed from the population.

Tabu Search for Efficient Linking. The next step
involves linking the encoded fragments for each individual
by a tabu search.31-33 For efficiency reasons GANDI builds
a look-up table containing all distances and angles of all pairs
of linker fragment connection vectors. Using cutoff values
and the look-up table, all possible connections of fragment
pairs of an individual are generated. A connection solution
is randomly picked, and the two fragments are joined with
the linker defined therein (Supporting Information Figure S2).
By employing a breadth-first search strategy36 fragments of
an individual are divided into two sets: a connected set,
which are the newly merged fragments and all fragments
connected previously, and a not-connected set. A new
connection solution is picked with at least one docked
fragment being part of the not-connected set, while omitting
already occupied connection vectors. The procedure contin-
ues until all fragments are connected or a maximal number
of connection trials has been exceeded. The score is
calculated for the built-up molecule (see below), and the
merging procedure is repeated for a user-defined amount of
iterations, storing only the docked fragments-linkers as-
sembly with the lowest score for every individual. A tabu
list of previously visited solutions is used during these
iterations to avoid repeated calculation of scores.

Selection of Fittest Individuals.Children are inserted into
the parent population if no structurally similar parent has a
more favorable score (see below for scoring function). The
3D-similarity between moleculesA andB is measured by37,38

whererij is the distance between two atoms (i ∈ molecule
X, j ∈ moleculeY), wtitj is a matrix whose coefficients reflect
the similarity between element types (an unit matrix is
currently used), andγ is a coefficient which acts on the
broadness of the distribution of the positions. The 3D-
similarity Sim3D does not explicitly consider the covalent
structure of molecules but relies on the arrangement of atoms
in space. In this way significantly different binding modes
of the same molecule (or of two very similar molecules, e.g.,
differing by only a halogen atom) are kept in the population
and evolved further if they have a good score. In the present
application to CDK2 the maximal similarity Sim3D of two
individuals within a population was set to 0.8 andγ to 0.9.
Individuals of the old population similar to new ones, but
with less favorable score, are given an arbitrarily high score
to reduce the likelihood of their selection in a subsequent
mating step. The size of the old population is adjusted after
merging the old and the new population by removing
individuals with the least favorable score.

Scoring.The scoring function implemented in GANDI is
a linear combination, i.e., a weighted-sum, of three terms:
a force field-based binding energy (Eff) and two measures
of similarity (Sim3D and Sim2D) to a user-supplied target
structure (e.g., a known inhibitor)

where the multiplicative parameterswff , w3D, and w2D are
input values, and usually eitherw3D or w2D is set to zero.
The minus signs for the similarity terms are used because
optimization is performed by minimization ofStotal and
Sim3D,2D grow with increasing similarity. Based on prelimi-
nary test calculations, the following values of the parameters
were used in the application to CDK2:wff ) 0.02,w3D )
1, andw2D ) 0. These values ofwff andw3D yield a good
balance of favorable binding energy and 3D-structural
similarity to the binding mode of a known oxindole inhibitor
of CDK2 (PDB code 1KE5). The term for 2D-similarity was
not taken into account because the knowledge of the binding
mode (from the X-ray structure) was preferred to a ligand-
based design.

The force field-based energy function consists of van der
Waals and electrostatic terms. Both intraligand (intra) and
ligand/receptor (inter) interactions are taken into account

The van der Waals energy is calculated with a 6-12
Lennard-Jones potential and the electrostatic energy with a
distance-dependent dielectric model using CHARMm atom
types, partial charges of protein atoms, and van der Waals
parameters39 (see below for partial charges of compounds).
Intrafragment and intralinker interactions as well as frag-
ment-linker interactions between atoms separated by one
or two covalent bonds are not evaluated. The potential of
the receptor is calculated and stored on a grid38 and is used
only for the linkers. The energies of the fragment poses are
read in from the MOL2-files to save computational time.

The 3D-structural similarity Sim3D between the newly
assembled molecule and a user-supplied template molecule
is evaluated by eq 1.

Sim3D(A, B) )
SAB

max(SAA, SBB)
(1)

SXY ) ∑
i∈X

∑
j∈Y

wtitj
e-γrij

2
(2)

Stotal ) wffEff - w3DSim3D - w2DSim2D (3)

Eff ) EvdW
inter + Eelec

inter + EvdW
intra + Eelec

intra (4)
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The third term in the scoring function is a fingerprint-
based 2D-measure of similarity Sim2D. To reduce compu-
tational cost and allow the user to decide on the fingerprint
type, the fingerprints of the template, linker, and docked
fragments are precalculated and read in from the input MOL2
files. The fingerprint can be any string of numbers and is
user-defined, but each entry of the string has to be additive
because the individual entries of the fingerprint of the
assembled molecule are calculated by summing up the
corresponding values of the linkers and docked fragments.
The fingerprint similarity between the targetA and the source
moleculeB is calculated with the Tanimoto coefficient34

wherexiA denotes theith fingerprint entry of moleculeA.
Protein Preparation. The crystallographic structure of

CDK2 cocrystallized with an oxindole-based inhibitor40 was
downloaded from the Brookhaven database (accession code
1KE5). The bound inhibitor and all water molecules were
removed, and hydrogens were added to side chains and
termini of the protein according to pH 7. CHARMm atom
types39 were assigned, and hydrogens were minimized in the
absence of the oxindole-based inhibitor with the CHARMm
force field (Accelrys Inc.) to a gradient of the energy of 0.01
kcal mol-1 Å-1. A distance-dependent dielectric function of
ε(r) ) 4r and default nonbonding cutoffs of 14 Å were used.

Preparation of the Oxindole-Based Inhibitor as a
Target for Structural Similarity. The crystallographic
ligand was prepared as described for the protein but was
minimized without any constraints inside the rigid protein
binding site usingε(r) ) 4r.

Preparation of Fragment Library. The library of frag-
ments, from which the molecules were constructed, was
obtained from Molinspiration Cheminformatics (www.mo-
linspiration.com, November 2006 accession date). The library
consisted of 20 000 fragments with one and 20 000 fragments
with two connection points occurring in bioactive molecules.
Both sets were converted from SMILES-strings to MOL2
format with CORINA41 and Babel,42 adding hydrogens with
Babel according to a pH of 7 and calculating partial charges
with the MPEOE approach.43,44CHARMm atom types were
assigned, and all fragments were subject to minimization.
The connection points defined in the source SMILES were
used as connection vectors of the fragments, using all
possible heavy atom-hydrogen atom vectors. Additionally,
geometrically identical vectors or pairs of vectors were
searched for by superpositioning all original vectors or pairs
of vectors with all possible heavy-atom-hydrogen atom
vectors and measuring the 3D-similarity Sim3D of the two
structures with eq 1. The original and superimposed frag-
ments were deemed identical if the similarity was larger than
0.95.

Docking of Fragments.Of the 40 000 fragments in the
library only the 13 788 containing less than four rotatable
bonds were used. Their properties are shown in Figure 2
(gray histograms). Of these, 6906 and 6882 have one and
two connection vectors, respectively. They were docked into
the receptor binding site with SEED, a program for docking
mainly rigid fragments with evaluation of protein-fragment
energy and electrostatic desolvation.38 Note that the 6882
fragments with two connection vectors were used also as
linker fragments in GANDI (see theGANDI subsection).
A maximal number of 20 cluster representative positions of
each fragment type were kept, using also a cutoff value of
-5 kcal mol-1 for the SEED38 energy. To discard docked
fragments with vector directions pointing toward the protein
surface, hydrogen atoms of connection vectors were indi-

Figure 2. Normalized distributions of molecular properties calculated by DAIM.45 Histograms for the 13 788 fragments docked by SEED38

are in gray and shaded, and those for the 1809 unique molecules obtained by the 10 GANDI runs with 4 islands and exchange of individuals
are black and empty. The vertical thick dashed lines represent the thresholds defined by Lipinski’s rule of five.52 The number of stereocenters
was evaluated with the STERGEN-module in CORINA,41 which considers tetrahedral chiral centers as well as cis/trans isomerism.

Sim2D )

∑
i)1

n

xiAxiB

∑
i)1

n

xiA
2 + ∑

i)1

n

xiB
2 - ∑

i)1

n

xiAxiB

(5)
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vidually modified into a methyl group, followed by mini-
mization of the methyl group inside the protein binding site
and in absence of the protein. Fragments were discarded if
the difference in energy for any vector between bound and
unbound states was larger than 5 kcal mol-1. This procedure
yielded a total of 8506 docked fragments with 72 822 poses.
Since some fragments contained multiple equivalent vectors
or pairs of vectors (e.g., six for benzene), which were defined
as separate poses in the GANDI input file, the final number
of poses increased to a total of 100 027.

GANDI. The setup of GANDI included three different
parameter settings with 400 individuals in a single island, 4
islands of 100 individuals each, and 4 islands with 100
individuals exchanging 5% of all individuals every 20th
iteration with a randomly selected island. Calculations were
repeated 10 times with distinct random seed numbers for
1000 iterations of the genetic algorithm and 20 iterations of
the tabu search per individual with all three setups. The
minimized oxindole-based inhibitor cocrystallized with the
protein (PDB code 1KE5) was used as a target structure.
The coefficients of the scoring function terms were set to
wff ) 0.02,w3D ) 1, andw2D ) 0.

The 13 788 Molinspiration-library fragments with less than
four rotatable bonds were used in each run of GANDI. The
6882 Molinspiration-library fragments with two connection
vectors and up to three rotatable bonds were used as linker
fragments with a total of 17 372 unique vector pairs. To
prevent the generation of unstable molecules, bonds between
nitrogen, oxygen, and sulfur atoms were avoided by using a
list of forbidden connections (S-S, S-O, S-N, O-O, O-N,
N-N).9,10 To maintain diversity throughout the optimization
procedure, the maximal 3D-similarity (Sim3D, eq 1) of two
individuals within an island was set to 0.8 and coefficientγ
to 0.9. All molecules were stored to disk every 20th iteration
of the optimization procedure.

A single run with 1000 iterations took 49.5( 1.2 min,
55.8( 3.0 min, and 58.5( 1.7 min for the GANDI setups
with 4 islands without exchange, 4 islands including ex-
change, and a single island, respectively, on a AMD Opteron
252 (single CPU, 2.6 GHz). The 1809 unique molecules
obtained by the 10 optimization runs with 4 islands with
exchange, for which CHARMm force field parameters were
available, were analyzed and processed further. Only

Figure 3. Binding mode of GANDI molecule with diaminothiazole
scaffold (last molecule in Table 3). (Left) Surface model of the
ATP-binding site of CDK2 (PDB structure 1KE5) with regions
corresponding to carbon, nitrogen, and oxygen atoms in green, blue,
and red, respectively. (Right) Overlap of GANDI molecule (carbon
atoms in gray) and the known oxindole inhibitor (carbon atoms in
green). The hinge region and three side chains of CDK2 are shown
with carbon atoms in cyan. The yellow dashed lines indicate
intermolecular hydrogen bonds. The figure was prepared with
PyMOL (DeLano Scientific, San Carlos, CA).

Figure 4. Evolution of the GANDI scoring function terms and the total score of the best individual in each island. The values at each
iteration step were averaged over 10 runs. Optimization was performed by minimization ofStotal ) 0.02Eff - Sim3D. The bold lines are
averages, while the thin blue lines are the standard deviation of the run with 4 islands including exchange.
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one of two poses of the same molecule was retained if the
DAIM-fingerprint45 consisting of 17 entries was identical and
the 3D-similarity Sim3D according to eq 1 was larger than
0.99.

Strain Energy. Atom types and partial charges were
updated for the generated molecules and minimized with the
CHARMm force field inside and in the absence of the rigid
protein to determine the strain energy and the free energy
of binding. The strain was calculated with a distance-
dependent dielectric ofε(r) ) 4r with

where inside corresponds to the conformation of the molecule
obtained by minimization inside the rigid receptor binding
site, and outside corresponds to the conformation minimized
in absence of the receptor.

Calculated Binding Energy. Upon ligand minimization
inside the rigid protein withε(r) ) 4r, the free energy of
binding was calculated with a 2-parameter LIECE (linear
interaction energy with continuum electrostatics) model46,47

where∆EvdW is the ligand/protein van der Waals interaction
energy, and∆Gelecis the sum of the ligand/protein Coulombic
energy in vacuo (ε ) 1) and the change in solvation energy
of inhibitor and protein upon binding. The Coulombic energy
in vacuo was calculated with infinite cutoff and neglecting
1-2 and 1-3 interactions. The electrostatic solvation energy
was calculated with the finite difference Poisson approach
implemented in CHARMM48,49using a final grid spacing of
0.4 Å. TheR andâ parameters had been derived by fitting
∆Gbind

LIECE to IC50 values of 73 known inhibitors in a previous
study, yieldingR ) 0.2866 andâ ) 0.0520.47

Docking by DAIM/SEED/FFLD. An in-house developed
suite of programs for flexible ligand docking was used to
assess the quality of the binding modes generated by GANDI.
First GANDI molecules were decomposed into fragments

by DAIM.45 The DAIM decomposition is fully automatic
(i.e., it does not require any manual intervention) and
proceeds in four phases: ring identification, initial fragment
definition, functional group merging, and completion of the
valences. DAIM prioritizes also the resulting fragments
according to their suitability as anchors for the docking
program FFLD.50 In FFLD an efficient evaluation of binding
energy (consisting of van der Waals and hydrogen bond
terms) is used as the cost function of a genetic algorithm
optimization in ligand dihedral space. The 1640 GANDI
molecules which yielded at least three fragments upon
decomposition with DAIM45 were redocked into the rigid
protein binding site by FFLD. These molecules were first
minimized in the absence of the protein to remove any
conformational bias introduced by GANDI. The fragments

Figure 5. Evolution of the volume overlap between the crystallographic inhibitor and the molecules produced by GANDI. Every 20th
iteration step the volume overlap is averaged over all individuals and all 10 runs. The thin blue lines are the standard deviation of the run
with 4 islands including exchange of individuals. The volume of the minimized crystallographic inhibitor (338.37 Å3) is shown in green.
The volume was calculated with the COOR-module in CHARMM.49

∆EStrain) Einside
compound- Eoutside

compound (6)

∆Gbind
LIECE ) R∆EvdW + â∆Gelec (7)

Table 1. 2D-Similarity Sim2D between Molecules Generated by
GANDI and Known Inhibitors

inhibitor set sorting Nbest
a NGANDI NKI [%]

Bramson et al.40 ∆Gbind
LIECE 25 5 60

(50 cpds with 50 10 64
nanomolar affinity) 100 13 64

Stotal 25 2 28
50 4 66

100 7 66
Gibson et al.53 ∆Gbind

LIECE 25 0 0
(23 cpds with 50 4 91
micromolar affinity) 100 6 91

Stotal 25 2 57
50 4 74

100 5 74

a Number of GANDI molecules with most favorable∆Gbind
LIECE or

Stotal considered for Sim2D evaluation. Values of Sim2D between the
known inhibitors and the GANDI molecules were calculated based on
normalized DAIM-fingerprints45 (Supporting Information Table S1).
Note that Sim2D was not used for optimization in GANDI.NGANDI is
the number of GANDI molecules with Sim2D > 0.9 to at least one
molecule from the respective inhibitor set.NKI is the percentage of
known inhibitors with Sim2D > 0.9 to at least one GANDI molecule.
The oxindole-based inhibitor used as a target structure (PDB code
1KE5) belongs to the nanomolar CDK2 inhibitors.
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obtained by decomposition with DAIM were then minimized
after updating the partial charges and atom types and docked
into the receptor binding site with SEED.38 The resulting
anchor points of the fragments were used to run FFLD50 three
times with distinct random seed numbers. Each FFLD run
consisted of 50 cycles of the genetic algorithm which is

sufficient to generate a diverse set of poses. For each
molecule docked by FFLD the 300 energy-sorted poses with
the lowest FFLD-energies were clustered with the leader
algorithm using eq 1 as a similarity measure and a similarity
cutoff of 0.6 yielding 16 820 poses (10.26( 7.08 per
molecule). The cluster representatives were minimized with

Table 2. Molecules with Favorable GANDI ScoreStotal Generated in the 10 GANDI Runs with 4 Islands Including Exchange of Individualse

a Values of Sim2D calculated according to eq 5 using normalized DAIM-fingerprints45 (Supporting Information Table S1).b Values of Sim3D

calculated by GANDI using eq 1.c Values ofStotal calculated by GANDI using eq 3.d Number of molecules found by DAIM45 in the ZINC library
containing the scaffold of the GANDI molecule (ring substituents and apolar hydrogens were removed to yield the query scaffold).e Atoms and
bonds in red are linker fragments, while fragments in black were docked with SEED.38 Dashed lines represent intermolecular hydrogen bonds to
the protein backbone in the hinge region.
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the CHARMm force field in the rigid protein binding site,
and the LIECE binding free energy47 was calculated for all
poses as detailed above for the molecules generated by
GANDI.

2D-Similarity Analysis. In the present application to
CDK2, 2D-similarity was used only for analysis and not
during GANDI runs. 2D-similarity between molecules was
assessed with the Tanimoto coefficient34 (Sim2D, eq 5) based
on normalized DAIM-fingerprints.45 Normalization was
performed by dividing the regular fingerprint values by the
median DAIM-fingerprint values of all unique molecules

from the ZINC library51 (version 5, Supporting Information
Table S1).

RESULTS

The serine/threonine kinase CDK2 used in the present
study shares the common topology of the ATP binding site
found in most kinases. Intermolecular hydrogen bonds are
key interactions found between most known inhibitors of
CDK2 and the hinge region connecting the N- and C-terminal
lobes of the protein (Figure 3, right). A hydrophobic pocket
resides at the buried end (pocket in green in the top part of

Table 3. Molecules with Favorable∆Gbind
LIECE Generated in the 10 GANDI Runs with 4 Islands Including Exchange of Individualsa

a The last molecule in this table is shown in Figure 3. See the legend of Table 2 for explanations.
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Figure 3, left) near the conserved DFG motif of the binding
site. By using a diverse library of fragments and due to the
relatively small size of the ATP-binding site, key interactions
are expected to be fulfilled by sets of nonoverlapping
fragments.

Optimization. The 3D-similarity term Sim3D in the scoring
function seems to dominate the total score given the
coefficients of the weighted-sum approach described in the
Methods section (Figure 4). Yet, the force field-based term
Eff is essential for optimizing both binding interactions and
intraligand interactions (eq 4). In fact, the 3D-similarity to
the target molecule decreases almost steadily during opti-
mization (Figure 4, middle), while the force field-based term
(Figure 4, top) decreases fast initially and fluctuates within
a certain range afterward. The single island setup displays
the fastest decrease in the total score of the fittest individual,
while the genetic algorithm with 4 islands including exchange
decreases to similar final values. On the other hand, running
the genetic algorithm with 4 noninteracting islands results
in worse scores throughout. Preliminary GANDI runs with
800 individuals in a single or 100 individuals in 8 islands
with exchange of individuals displayed even a faster decrease
in the overall score per iteration at a 2-fold increase in
computational cost (data not shown).

Similarly, the overlapping volumes between the target
structure and the molecules generated by GANDI increase
fast initially and only change marginally afterward (Figure
5). The increasing volume overlap is a direct effect of the
3D-similarity based scoring function term Sim3D, which
penalizes deviations of the GANDI molecule and its binding
mode from the target inhibitor.

Taken together, the results indicate that the size of the
population predetermines the amount of search space to be
sampled and thus has a direct effect on the quality of the
solutions found. Hence, the larger the number of individuals
which can exchange genetic material, the faster the decrease
in total scores. But these enlarged populations are associated
with an increase in CPU time, which might offset the overall
improvement. The migration of individuals between islands
successfully prevents the algorithm from getting trapped in
less favorable regions of the search space as observed in the
case of the genetic algorithm setup with noninteracting
islands.

Druglikeness.Most of the molecules generated by GANDI
fulfill Lipinski’s rule of five 52 and do not have stereocenters
(Figure 2). This result is not surprising because the size of
the binding site, the target structure, and the set of fragments
predetermine the features of the molecules designed by
GANDI.

Similarity to Known CDK2 Inhibitors. Several of the
100 GANDI molecules with the most favorableStotal or
∆Gbind

LIECE are similar (Sim2D) to either the oxindole or
another series of CDK2 inhibitors53 (Table 1). A comparison
with the crystal structure of CDK2 in the complex with the
oxindole inhibitor40 shows that GANDI molecules include
key motifs of the target structure, e.g., the two ring systems
joined by a linker (Tables 2 and 3, Figure 3). Note that the
oxindole inhibitor used as target for the 3D-similarity (PDB
code 1KE5) is not generated by GANDI because benzyl-
sulfonamide is not present in the Molinspiration library.
Scaffold or linker hopping is observed in some of the

compounds generated by GANDI (Tables 2 and 3) and is a
consequence of the enforced 3D-structural diversity within
populations during genetic algorithm optimization. Despite
the remarkable similarity with known inhibitors some of the
GANDI molecules are likely to be inactive, e.g., the
compound with the-CH2-NH- linker which lacks a
hydrogen bond acceptor for the backbone NH of the hinge
region (Table 2).

One striking result is the GANDI compound in the bottom
of Table 3 which contains a 2-N-phenyl-1,3-thiazole-2,4-
diamine moiety. The three nitrogen atoms of its diaminothia-
zole scaffold are involved in three hydrogen bonds with the
hinge region in the pose generated by GANDI (Figure 3,
right). An anonymous referee pointed out that diaminothia-
zoles are known inhibitors of CDK2. In particular the 2-N-
phenyl-1,3-thiazole-2,4-diamine moiety is present in a 220
nM inhibitor of CDK2 (compound15 in the review article54).

Binding Mode and Free Energy of Binding.The binding
poses of the molecules generated by GANDI display low
rmsd values from their CHARMm-minimized counterparts
(Figure 6), indicating that the former are structurally close
to a local minimum conformation of the CHARMm force
field (Accelrys Inc.). The distribution of strain energies of
all molecules generated by GANDI is also more favorable
compared with a distribution derived from a previously
reported high-throughput docking campaign47 (Figure 7).
Since molecular weight distributions of the two sets differ,
with the GANDI molecules generally being smaller, a set
of poses with molecular weight distribution as the GANDI
molecule set was randomly selected 100 times from the
library of molecules used in the high-throughput docking
campaign. Removal of the size bias results in a shift of the
corresponding distribution to smaller strain energies. None-
theless the molecules from GANDI still display lower strain
energies.

The distribution of the calculated binding energy versus
the molecular weight reveals that most of the molecules
designed by GANDI are located between two series of
known inhibitors with micromolar53 and nanomolar40 activity
(Figure 8). The redocking of GANDI molecules with DAIM,
SEED, and FFLD yields an average of 10 poses per
compound. Comparing the poses with the lowest∆Gbind

LIECE

of all redocked molecules with the binding modes produced

Figure 6. Normalized distribution of heavy atom rmsd between
the conformations generated by GANDI and their CHARMm-
minimized counterparts.
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by GANDI revealed that 32% of the former show a distinct
binding mode (RMSD> 2 Å) with more favorable free
energy of binding than the latter. Furthermore, only 9% of
the redocked molecules have a∆Gbind

LIECE more favorable by
more than 1 kcal mol-1 than the GANDI pose. These results
indicate that GANDI mostly generates optimal poses.

Availability of Molecules Designed by GANDI.Analysis
of the existence of GANDI molecules in the ZINC library51

(version 5) reveals that eight out of 1809 GANDI molecules
are commercially available. Additionally, 586 molecules with
a scaffold identical to one of the eight GANDI compounds
shown in Tables 2 and 3 are retrieved from the ZINC library

by performing a substructure search with DAIM45 (Support-
ing Information Tables S2-S6). On the other hand, no
molecules containing the scaffold of the oxindole-based
inhibitor are present in ZINC.

CONCLUSIONS

GANDI is a new computer program for fragment-based
de novo ligand design. A combination of genetic algorithm
and tabu search is used in GANDI for the simultaneous
optimization of force field energyand(2D or 3D) similarity
to known inhibitor(s). Therefore, the design is both binding
site-based and ligand-based. Importantly, the relative im-
portance of these twodriVing forcescan be modulated by
the user.

In an application to the CDK2 kinase 1809 molecules were
generated by GANDI within the ATP-binding site in less
than 10 h on a low-cost PC using a library of 14 000
fragments with up to three rotatable bonds. The binding mode
of these molecules show low strain compared to poses of
commercially available compounds of similar size originating
from a previous high-throughput docking campaign.47 In
addition the binding modes are structurally close to a local
minimum of the CHARMm force field, and their predicted
free energy of binding (calculated using continuum electro-
statics solvation) is within the range of known inhibitors of
CDK2. Notably, molecules similar to those generated by
GANDI are commercially available providing further evi-
dence of the usefulness of GANDI for de novo drug design.

GANDI can generate molecules similar to known kinase
inhibitors. Importantly, by enforcing diversity throughout the
optimization and by using a 3D-similarity-based scoring
function term Sim3D, which does not rely on a covalent
structure of the compared molecules, scaffold or linker
hopping was observed, retaining the common binding motifs
of known kinase inhibitors. A striking example is the GANDI
compound on the bottom of Table 3 which shares a 2-N-
phenyl-1,3-thiazole-2,4-diamine moiety with a 220 nM

Figure 7. Normalized distribution of strain energies of all molecules generated by GANDI (black) and, as a comparison, all poses resulting
from a high-throughput docking campaign47 (red). The blue histogram is the average over 100 randomly picked subsets of the latter with
equal molecular weight distribution (bin size of 10 g mol-1) as the set of GANDI molecules to rule out any size dependency of the strain
energy.

Figure 8. Two-dimensional histogram of calculated free energy
of binding versus molecular weight of the 1809 GANDI molecules
(bin sizes of 0.29 kcal mol-1 and 9.57 g mol-1 for the X- and
Y-axis, respectively). Isofrequency lines of the histogram (red) are
shown every frequency-interval of five units. The plus symbol
denotes the oxindole inhibitor present in the crystal structure, and
the dots and diamonds are two series of known inhibitors of CDK2
with nanomolar40 and micromolar53 activity, respectively, which
had been used in a previous study.47
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inhibitor of CDK2.54 Its central diaminothiazole scaffold is
involved in the same intermolecular hydrogen-bonding
pattern with the hinge region as several known inhibitors of
CDK2 (Figure 3, right).

Because a large variety of ATP-binding site inhibitors of
kinases form hydrogen bonds with the hinge region, in the
present application of GANDI the 3D-similarity to the
binding modeof a known nanomolar inhibitor of CDK2 was
enforced (using Sim3D). For protein targets with known
inhibitors of uncertain (or unknown) binding mode it might
be appropriate to bias the GANDI design by the 2D-similarity
to known inhibitors (using Sim2D). For this purpose, the
relative importance of the force field binding energy and 2D-
information (i.e., 2D ligand-based design) can be tuned by
the multiplicative parameter of Sim2D. Furthermore, chimeric
molecules can be designed by GANDI using two or more
known inhibitors as targets for the 2D- or 3D-similarity
evaluation. Chimerization takes place spontaneously because
during optimization the genetic algorithm enforces 3D-
diversity among molecules in the population. This ligand-
based design approach and other applications of GANDI are
currently being investigated in our research group.

Availability of GANDI. The program GANDI as well as
its documentation and test cases are available for free to not-
for-profit institutions.
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