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Abstract

This paper provides an unbiased comparison of four commercially available programs for loop
sampling, Prime, Modeler, ICM, and Sybyl, each of which uses a different modeling protocol. The
study assesses the quality of results and examines the relative strengths and weaknesses of each method.
The set of loops to be modeled varied in length from 4–12 amino acids. The approaches used for loop
modeling can be classified into two methodologies: ab initio loop generation (Modeler and Prime) and
database searches (Sybyl and ICM). Comparison of the modeled loops to the native structures was used
to determine the accuracy of each method. All of the protocols returned similar results for short loop
lengths (four to six residues), but as loop length increased, the quality of the results varied among the
programs. Prime generated loops with RMSDs <2.5 Å for loops up to 10 residues, while the other three
methods met the 2.5 Å criteria at seven-residue loops. Additionally, the ability of the software to utilize
disulfide bonds and X-ray crystal packing influenced the quality of the results. In the final analysis, the
top-ranking loop from each program was rarely the loop with the lowest RMSD with respect to the
native template, revealing a weakness in all programs to correctly rank the modeled loops.
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The determination of the three-dimensional structure of a
protein is a key component in understanding the mecha-
nism of action, and is a fundamental part of rational drug
design (Hillisch and Hilgenfeld 2003). Unfortunately, the
three-dimensional structure for many therapeutically rele-
vant targets is often not available at the initiation of a drug
discovery program. In these cases, comparative modeling
can often provide a useful three-dimensional model for a
protein target that is related to one or more known protein
structures. Templates for modeling are selected from the
same protein family or proteins with similar biochemical
function (Hillisch et al. 2004; Jacobson and Sali 2004;
Wieman et al. 2004; Esposito et al. 2006).

Even within a family of homologous proteins, func-
tional variations can arise as a consequence of structural

differences which are often found on the protein surface.
Such structural differences within a family are often a
result of amino acid substitutions, insertions, and dele-
tions, and are typically found on exposed loop regions
connecting elements of conserved secondary structure in
the protein fold. Thus, loops frequently determine the
functional specificity of a given protein framework, and
can contribute to the active and binding sites of proteins.
Accuracy of loop modeling can therefore play a critical
role in structure-based design when studying interactions
between a cognate protein and its ligand(s). Examples of
these types of interactions include the use of models for
ligand binding site recognition (Jones and Thornton 1997;
Fetrow et al. 1998; Russell et al. 1998; Kasuya and
Thornton 1999; Kleywegt 1999; Wei et al. 1999), virtual
screening (Kairys et al. 2006), and ligand docking (Kick
et al. 1997; Hobrath and Wang 2006).

Numerous examples demonstrating the successful appli-
cation of comparative protein modeling in drug discovery
are well documented (Hillisch et al. 2004; Jacobson and
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Sali 2004). In several such cases, the success of the
method relies on the accuracy of predicting the confor-
mation of one or more loops that are near the active site,
and which can, therefore, influence ligand binding. Some
recent examples include the modeling of the P and R
loops in DP8 and DP9 in order to explain the observed
lack of selectivity of some DP4 inhibitors (Rummey and
Metz 2007), the modeling of the second extracellular loop
in the dopamine receptor (a G protein-coupled receptor)
in order to explain the interaction with substituted
benzamides (Kortagere et al. 2006), and the modeling
of the 10-residue-long linker domain containing the
active site residues in 1-deoxy-D-xylulose-5-phosphate
reductoisomerase, a potential antimalaria target (Singh
et al. 2006) . Furthermore, in the modeling of kinases, the
conformation and orientation of the activation loop is
critical in discerning the catalytically active from inactive
form of the protein (Kornev et al. 2006, and references
therein).

The studies cited above underscore the need for reliable
methods for loop structure prediction because loops are
often an essential component of the functional domain of
proteins. Because of the observed variation in conforma-
tion, and thus flexibility, even within a given protein
family, ab initio approaches to loop modeling that do not
depend on homology modeling have emerged. Most ab
initio methods for loop prediction deal with solvent-
exposed loops in globular proteins (Jacobson et al.
2004; Rohl et al. 2004). However, in cases involving
partially buried loops, more sophisticated protocols that
involve molecular dynamics have evolved as alternatives
(Mehler et al. 2006). The primary purpose of our study is
to evaluate the relative performance of different algo-
rithms for modeling a wide range of loops from a
selection of globular proteins. The algorithms do not
include the protocol described by Mehler et al. (2006),
and transmembrane proteins have been excluded from
this study.

Loop modeling can be viewed as a constrained protein
folding problem. The conformation of a given segment of
a polypeptide chain (i.e., the loop) is modeled from the
sequence of the segment using geometric constraints
imposed by the backbone atoms at the N and C termini
that anchor the loop to the remainder of the protein.
Studies have shown that identical peptide segments of up
to nine residues can have entirely unrelated conforma-
tions in different proteins (Sander and Schneider 1991;
Cohen et al. 1993; Mezei 1998). Thus, the conformation
of a given loop is determined not only by the anchor
regions that orient the loop, but also by the protein
architecture that surrounds the loop.

The relative performance of various commercial soft-
ware for building homology models has been the subject
of recent studies (Wallner and Elofsson 2005; Nayeem

et al. 2006). These studies focused on comparing the
relative quality of sequence alignments and the accuracy
of the 3D models that are produced based on the correct
sequence alignment. Since sequence alignments contain
relative insertions and deletions, loop modeling was not
examined exclusively. The present study focuses solely
on loop modeling, assessing the relative performance of
four commercial software packages. The loop-modeling
programs can be classified into those that use (1) ab initio
methods, as exemplified by Prime (Schrödinger, LLC)
and Modeler (Accelrys Software Inc.), and (2) database
searches, as exemplified by Sybyl (Tripos, Inc.) and ICM
(Molsoft LLC). For a given loop sequence, the ab initio
programs perform a conformational search and rank the
subsequent loops using a scoring function. The database
methods search protein structural databases for protein
backbone segments that best fit the anchor regions of a
selected loop (the parts of the main chain that precede and
follow the loop); segments are then superimposed and
annealed onto the anchor regions, optionally followed by
refinement, and scored in order of ‘‘fitness.’’

Four software packages were selected based on com-
mercial availability and prevalence of use in the pharma-
ceutical industry. Historically, Modeler has been the
standard for homology modeling; Prime has rapidly
become a viable alternative to Modeler but has not been
widely studied in the literature. Sybyl and ICM both uti-
lize database search techniques with different methods
of assessing the constructed loops.

The loop data set used in this study is a hand-picked
subset of the loops used by Jacobson et al. (2004), Fiser
and Sali (2000), and Xiang et al. (2002), specifically
selected to span a wide range of protein architectures and
structural classes. Individual program performance was
evaluated based on the RMSD of the calculated loops
with respect to the native protein and comparing the
results thusly obtained using these different method-
ologies. In addition, attention was focused on the relative
quality of the rank ordering of the loops produced for
each program. Since the rank ordering (scoring) of the
resultant loops is a major consideration when building
loops for homology models, the assumption that the top-
ranked loop is correct was examined in this study. Finally,
a critical assessment, including visual evaluation, was
performed to exemplify the strengths and weaknesses of
each method.

Methods

Data set selection

The set of loops to be examined in this study was chosen
from a previously compiled filtered loop database des-
cribed by Jacobson et al. (2004). All protein structures in
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the data set were determined by X-ray crystallography at
#2.0 Å resolution and are diverse, sharing a maximum
sequence identity of #60%. Loops selected for this study
were also required to meet the following criteria: (1)
Atoms in the loops have low-temperature factors; specif-
ically, loop backbone atoms (N, C, Ca, and O) have an
average temperature factor of #35; (2) loops belong to
proteins representing a wide range of protein structural
families; (3) both solvent exposed and buried loops,
spanning a variety of secondary structural elements (helix
to helix, strand to helix, helix to stand) are represented;
and (4) protein structures having incomplete residues
within 10 Å of the loop to be sampled were excluded.
A total of 197 loops (107 protein structures), ranging
from 4–12 residues in length, were selected for this work.
As shown in Table 1, each set of loops ranging from 4–10
residues had 19–27 loops per length, while the 11- and
12-residue loops, being more restricted by the criteria
listed above, had 14 and 10 loops per length.

Protein preparation

Hydrogen atoms were added to all proteins structures, and
standard protonation states at pH 7.0 were used (Asp, Glu
ionized; Arg, Lys protonated). Protein assignment was
performed using Maestro (Schrödinger, LLC) to optimize
the positions of Ser, Thr, and Tyr hydroxyl protons, and
His protonation and tautomeric states. The positions of
Asn, Gln, and His side chains were also optimized via 180
degree terminal-chi flips. Waters, metals, and cofactors
were removed, while any bound ligands or substrates
were retained. Ligand bond orders and formal charges
were set to their proper values. Since X-ray structures are
optimized to fit electron densities rather than minimum
energy conformations, they often exhibit significant
deviations from regularized molecular geometries. Such
distorted geometries can cause force-field energies to
be high. Therefore, each protein structure was sub-
jected to relaxation using a series of restrained, partial

Table 1. Characteristics of loop data seta

Loop
number

Loop Length

4 5 6 7 8 9 10 11 12

1 1aaj:82–85 153l:131–135 1ads:149–154 1a62:89–95 1a62:71–78 1aac:58–66 135l:18–27 153l:154–164 153l:98–109

2 1ads:99–102 1a2y:14–18 1ads:150–155 1bkf:64–70 1ads:274–281 1arb:168–176 1ads:170–179 1a2p:76–86 1akz:181–192

3 1cbs:21–24 1a8e:197–201 1brt:174–179 1ads:186–192 1alc:34–41 1arp:127–135 1ads:171–180 1a2y:91–101 1arb:74–85

4 1frd:59–62 1frd:83–87 1brt:253–258 1brt:226–232 1arb:136–143 1aru:36–44 1amp:181–190 1akz:211–221 1bkf:9–20

5 1gpr:123–126 1gpr:54–58 1cbs:66–71 1cvl:111–117 1cvl:148–155 1cse:95–103 1arb:41–50 1awq:1101–1111 1cex:40–51

6 1nfp:37–40 1hbg:19–23 1dim:318–323 1dad:116–122 1gof:606–613 1csh:252–260 1arp:37–46 1cvl:257–267 1dim:213–224

7 1pbe:117–120 1hbq:158–162 1dts:146–151 1dim:198–204 1hbq:31–38 1ede:257–265 1aru:128–137 1dad:42–52 1ixh:160–171

8 1pda:139–142 1kuh:37–41 1ede:180–185 1edg:309–315 1hfc:119–126 1fus:91–99 1btl:170–179 1fus:28–38 1xyz:813–824

9 1plc:74–77 1lit:131–135 1gca:100–105 1gca:196–202 1hfc:142–149 1lkk:142–150 1dim:87–96 1ixh:120–130 1luc:158–169

10 1ppn:42–45 1lit:51–55 1mrp:233–238 1hbg:46–52 1nar:192–199 1mla:194–202 1fkf:63–72 1mla:9–19 2ayh:21–32

11 1rcf:111–114 1lkk:186–190 1nif:211–216 1hfc:152–158 1nif:221–228 1nls:131–139 1gpr:133–142 1rcf:122–132

12 1thw:194–197 1mla:102–106 1noa:25–30 1iab:142–148 1nif:279–286 1onc:70–78 1gvp:49–58 2eng:124–134

13 1tib:46–49 1mla:275–279 1onc:12–17 1lif:64–70 1nls:97–104 1pda:108–116 1ixh:84–93 2pth:8–18

14 1tml:42–45 1nar:56–60 1rge:73–78 1mbd:17–23 1nwp:84–91 1pgs:117–125 1knt:35–44 3pte:91–101

15 1xif:82–85 1nfp:95–99 1rhs:50–55 1mla:80–86 1oyc:80–87 1php:91–99 1mrj:173–182

16 2exo:161–164 1noa:88–92 1tca:38–43 1nif:65–71 1prn:150–157 1sgp:109–117 1plc:42–51

17 2sga:44–47 1prn:187–191 1tca:94–99 1php:135–141 1thw:18–25 1xnb:116–124 1ppn:190–199

18 2sil:220–223 1rie:149–153 1tys:66–71 1rhs:21–27 1tml:187–194 1xnb:133–141 1scs:65–74

19 2tgi:72–75 1sbp:181–185 1xyz:633–638 1sgp:128–134 2ayh:194–201 1xyz:795–803 1tca:23–32

20 4enl:335–338 1tca:157–161 1xyz:711–716 1tca:132–138 2ayh:169–177 1whi:47–56

21 4gcr:116–119 1tml:147–151 2ayh:81–86 1tml:20–26 2cpl:24–32 2cmd:57–66

22 7rsa:47–50 1vcc:63–67 2eng:9–14 1xyz:689–695 2eng:172–180 2mnr:91–100

23 1xyz:559–563 2mnr:308–313 2mnr:270–276 3pte:107–115 2sil:197–206

24 2cba:168–172 2ran:40–45 2pth:95–101 3hsc:28–37

25 2cmd:188–192 2sil:176–181 3tgl:159–165 7rsa:110–119

26 2hbg:37–41 3pte:131–136 5p21:83–89 7rsa:33–42

27 7rsa:75–79 3pte:256–261 7rsa:87–96

28 5p21:104–109

29 8abp:65–70

Total

loops 22 27 29 26 19 23 27 14 10

a The specific loops studied are listed by PDB code and separated by loop length. The total number of loops for each length is shown at the bottom. The loop
number corresponds to the numbers shown in the graphs in Figure 1A–J.
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minimizations using the OPLS-2001 force field (Jorgensen
et al. 1996; Kaminski et al. 2001; Jacobson et al. 2002)
until the average RMS deviation of the heavy atoms
reached a maximum of 0.3 Å with respect to the starting
structure. These minimized structures were used as the
starting point for loop generation, and also served as the
reference templates for evaluation of results. To ensure no
bias was incurred using the minimized structure, several
loops were calculated using the native, unminimized
protein, and no difference in the trends were observed.

Prime

The Loop Refinement module in Prime version 2.5
(Schrödinger, LLC) uses an ab initio loop prediction
method. The energy function used by Prime is the
OPLS-2001 all-atom protein force field with the Surface
Generalized Born implicit solvent model (Ghosh et al.
1998; Gallicchio et al. 2002). Briefly, Prime uses a
dihedral-angle-based buildup procedure to extensively
sample conformational space, followed by iterative cycles
of hierarchical screening and clustering to select repre-
sentative loop candidates. Loop candidates then undergo
side-chain optimization followed by a final complete
energy minimization of the side-chain optimized loop
structures. The residues of the loop to be sampled were
specified and the Prime loop refinement sampling method
set to ‘‘serial loop sampling’’ at an ‘‘extended high’’
sampling accuracy. The default setting fixed all core
protein backbone atoms, but side-chain atoms within
7.5 Å of the calculated loop were allowed to relax. For
loops with cysteines known to participate in disulfide
bonds, the sulfurs of the cysteine residues were typed as
disulfides. For each calculation, results were returned
for the top six loop predictions ranked by energy. Prime
also offers the opportunity to carry out loop refinement
calculations within a protein’s crystal environment. In
this study, the set of proteins for the 11-residue loops was
selected to undergo loop refinement in the crystal envi-
ronment in addition to the calculations described above.

Modeler

Loops were generated in Modeler, version 7.0 (Accelrys
Software Inc.) using the Refine Loop utility. Modeler
uses conjugate gradients and molecular dynamics with
simulated annealing to optimize the positions of all non-
hydrogen atoms. The energy of the loop is derived from
a combination of molecular mechanics terms from the
CHARM-22 force field (MacKerell Jr. et al. 1998) and
empirically derived terms based on statistical preferences
for the main-chain and side-chain dihedrals and non-
bonded atomic contacts derived from known protein
structures. The residues of the loop to be sampled were

specified, and the loop optimization level was set to high,
using the most thorough annealing protocol available in
this program. The six top-ranking loops generated were
returned for analysis. If disulfide bonds were present in
the loop, those constraints were added to the input file to
create the disulfide bonds on the resultant loops.

ICM

The Loop Sampling option was used in ICM, version 3.4–
8 (Molsoft LLC) to generate plausible loop conforma-
tions for the test set using a knowledge-based approach
for loop searching. A nonredundant version of the PDB
(proteins with >90% identity were removed from the
database) was used to assemble a custom database for
loop searches that excluded proteins from the loop test
set. The original loop was cleaved out of the protein and
the sequence of the desired loop is used for the search.
Computational searches of the database select replace-
ment loops by geometrically matching loop ends, proper
sequence length, and as close a loop sequence as possible
to the query loop sequence. The template loop was then
inserted into the protein model and side-chain types were
modified to match the desired loop sequence. The result-
ing loops can have additional problems such as loop
attachment points, which may have strained geometry and
steric clashes that can occur with the main portion of the
protein. The minimize loop feature in ICM was used to
remove steric violations and relax geometry at loop junc-
tions. The loop sampling procedure available in the ICM
graphical user interface was used for the model building.

Sybyl

Version 7.1 of Sybyl was used in this study. The Protein
Loop Search functionality within Sybyl/Biopolymer uses
a knowledge-based approach to model loops. The calcu-
lations were run by cleaving the loop from the core
protein and supplying the sequence for the calculation.
This method finds fragments in a database, constructed
from the Protein Data Bank, that are the proper residue
length whose anchor regions have a good geometric fit to
the anchor regions of the modeled protein, and then melds
the fragments onto the anchor regions of the protein.
Application of this procedure usually generates several
candidate loops that satisfy the geometrical requirements.
A spreadsheet with interactive graphical tools is available
for analyzing and selecting from the retrieved fragments
on the basis of quality of fit to the anchor regions and
sequence homology. In the event that the database search
fails to identify hits, an alternative method called Random
Tweak Loop Generation, which relies on a constrained
conformational search, is used (Sybyl 2005). The method
is based on that of Fine et al. (1986) and Shenkin et al.
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(1987). For our purposes, all fragment hits that were
derived from proteins showing sequence identity of 90%
or higher were removed from the search.

Accuracy of loop prediction

Six loop models were calculated for every loop using the
four modeling programs. The accuracy of each loop
prediction was evaluated by comparing it with the refined
native protein. Results are reported as ‘‘global’’ RMSDs.
The whole protein, excluding the loop, was superimposed
on the minimized native structure, and the RMSDs were
calculated for the main-chain atoms (N, C, Ca, and O) of
the modeled loop with respect to the native loop. Two
distinct criteria, providing different evaluation metrics,
were used to assess the modeled loops; the ‘‘top-rank
RMSD’’ and ‘‘best RMSD’’ are defined as follows. The
top-rank RMSD is the RMSD of the loop that was ranked
first of the six loops calculated from each program. This
type of result is useful to assess how well each of the
loop-modeling algorithms score the modeled loops, and is
discussed in detail in this study. The best RMSD is the
RMSD of the modeled loop that most closely matches the
native loop irrespective of rank (first through sixth). While
this number is only useful (and calculable) when it can be
compared to the correct answer, i.e., the native structure, it
provides a measure of how well the algorithms sample the
loop and whether it is possible to achieve a good-quality
result from a given loop-modeling program.

Results

First we assess the performance of the loop-modeling
algorithms for all loop lengths. The loops are then broken
down into representative short (five residue), medium
(eight residue), and long (11 residue) loop lengths.
Specific loops from each of these categories were used
to illustrate interesting behavior from a modeling or
structural viewpoint, and are discussed in detail. The
loops were evaluated by top-rank RMSD and best RMSD
as defined above. The best RMSD of the results was used
to evaluate the strengths and weaknesses of each pro-
gram. Additional observations are made that evaluate
different features available in the programs.

Overall, the four programs generated reasonable qual-
ity loops (<2 Å) for at least a few loops within each set of
loop lengths up to 10-residue loops (Fig. 1A–I). Figure 1J
gives an overview of how well the programs performed by
taking the average of the RMSDs from each loop length
for each method, evaluating both best RMSD and top-
rank RMSD. Prime produced loops with the lowest
RMSD compared to the crystal structure; calculated using
both top-ranking as well as best RMSD. When assessing
best RMSD, all programs performed well in the shorter

loop lengths (four to six residues), with RMSDs usually
below 1 Å, which is an unexpectedly good result. This
supports the use of loop-modeling methods for modeling
shorter length loops with good accuracy. The medium
length loops, seven to nine residues, yielded loops that
had best RMSDs >2 Å over 50% of the time, and showed
more variation between the programs where Prime began
to stand out from the other three programs (Fig. 1J). The
accuracy of the calculated loops drops off for the longer
length loops to 3–5 Å (10–12 residues) for all methods.
The 27 loops in the 10-residue set had similar RMSDs
(Fig. 1G) for all methods, with no single program stand-
ing out significantly. The two other sets of long loops that
were modeled, 11- and 12-residue lengths, however,
showed a very wide variation in the quality of results
depending upon modeling algorithm (Figs. 1H–I), with
Prime producing the best loops for both lengths yielding
four of the 10 loops with best RMSDs under 2.5 Å, and
Sybyl generating the worst by a large margin producing
four loops with best RMSDs over 6 Å.

Short loops: 5 residues, 27 loops

All four programs generated loops with good accuracy
(Fig. 1B) for this short length loop, yielding the majority
of results with an RMSD <0.6 Å. The best RMSDs for the
five-residue loops from Prime most closely matched the
native structure for 23 of 27 loops; nine of these loops
also scored as the top-ranking loops by Prime, yielding
the best results compared to other methods for this loop
length. The results from Modeler were second best, with
21 of 27 the best RMSDs under 1 Å. However, the top-
ranked loops from Modeler had significantly higher
RMSDs than the loops with the best RMSDs. This shows
that the scoring function used by Modeler is less accurate
than the one used by Prime to rank loop conformations.
Modeler is capable of generating loops that are very close
to the native structure, but is unable to select the loop that
most closely resembles the native structure as top ranked.
Despite the fact that ICM and Sybyl both use database
search methods, ICM seems to outperform Sybyl in the
majority of the loops sampled. This may be due in part
to the database from which the loops are selected, or it could
be due to the criteria used to select loops from database.
Sybyl had the poorest results with significantly worse top-
rank RMSDs, six loops over 3 Å and three of those >4 Å.

Effect of salt bridges

1vcc, residues 63–67

Figure 2A shows the top-ranking and best RMSD
results from all four loop-modeling algorithms for the
five-residue loop in 1vcc. Although Prime produced the
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most accurate results for five-residue loops, loop 1vcc
proved to be the greatest challenge for Prime. Close
inspection of this loop revealed that Sybyl and ICM
generated loops similar to the native structure with best
RMSDs near 0.5 Å. Modeler has the general shape of the
loop correct, but is shifted from the native by 1.5 Å.
Prime gave a best RMSD of 2.6 Å, the worst result for this
program in this loop length. The conformation of the
Prime loop is folded against the protein. For Prime this is
a typical result, because loop conformations are rejected
as they are being constructed if the backbone of the loop

is too far from the protein core. There are many cases in
this study where this procedure works in favor of Prime,
because many loops prefer to form contacts with the rest
of the protein rather than being solvent exposed. For 1vcc
the Prime loop conformation is also driven by a salt
bridge formed between Lys 65 in the loop and protein
core residue Asp 42. Generally, including electrostatics
yields good quality results. In this case, however, the
combination of the salt bridge and the packing of the loop
against the core of the protein caused Prime to produce
loop models that had the highest best RMSD.

Figure 1. (Continued on next page)
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1hbg, residues 19–23
Prime generates better loops for 1hbg than the other

three programs by a significant margin, with a top-rank
RMSD of 0.3 Å, Figure 2B. In this case, correct formation
of a salt bridge between loop residue Asp 21 and protein
core Arg 117 proves to be advantageous for Prime. ICM

gives the second most accurate result, having a best
RMSD of 1.4 Å and maintaining the overall general
shape of the loop with a small shifting of the backbone.
Modeler inverts the shape of the loop, yielding a best
RMSD of 1.9 Å. Sybyl produces the worst result in this
group with a best RMSD of 4.0 Å. It is apparent that the

Figure 1. (A–I) Graphs showing the best and top-ranked RMSDs from each program for the 4–12 residue loops. The X-axis is the loop number

(which corresponds to the loops shown in Table 1) and the Y-axis is the RMSD in Angstroms. The colors are described in the key at the bottom of each

figure. (J) The 11-residue loops generated by Prime with (orange) and without (dark blue) crystal contacts. (K) The average RMSD of both the best loop

and top-ranked loop over each loop length for each program. (L) The percentage of loops scored correctly for each loop length: Prime (dark blue), Modeler

(magenta), Sybyl (yellow), and ICM (cyan).
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lack of a steric component in the Sybyl scoring function
greatly affects the quality of this result, allowing side
chains to come within van der Waals contact of one
another. In this example several instances of atomic
distances <1 Å are observed.

Medium loops: 8 residues, 19 loops

As expected, the top-ranking solutions for eight residue
loops (Fig. 1E) were less similar to the native structure
compared to top-ranking solutions for five residue loops
(Fig. 1B), which rarely had best RMSDs >2.5 Å. The
results for the eight-residue loops show many best

RMSDs above 4 Å and the top-ranking loops produced
by the modeling programs produced many loops with
RMSDs over 6 Å. Overall, Prime performed best for the
eight-residue loops, but not as well as it did for the five-
residue loops. Of the 19 loops sampled, Prime produced
12 solutions that had best RMSDs <1.5 Å, which, like the
five-residue loops, are accurate results that would be
acceptable for use in structure-based drug design. These
12 loops most closely matched the native structure
compared to the other methods; however, only four of
these were also ranked to be best. Modeler, again,
performed better than ICM and Sybyl, giving four
solutions most like the native out of these three programs,

Figure 2. (Continued on next page)
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with a best RMSDs <3.0 Å, one of which was also top
ranked. ICM had only one loop, 1thw, with the overall
best result, best RMSD ¼ 2.2 Å. This loop was predicted
nearly as well by Prime, best RMSD ¼ 2.4 Å. Sybyl
performed similar to ICM, predicting one loop, best
RMSD ¼ 0.6 Å, most accurately, but gave the greatest
number of solutions with high, yielding six loops with a
high best RMSD of >4.0 Å.

1gof, residues 606–613

None of the programs were able to accurately predict
the conformation of 1gof within <3.0 Å of the native
structure (Fig. 2C). Modeler most closely matched the
native with a best RMSD of 3.1 Å, followed closely by
ICM with a best RMSD of 3.4 Å. Both of these programs
generated loops that had turn-like moieties at the end of
the loop, somewhat mimicking the crystallographic loop
that has a turn in that region. The best results from Sybyl

and Prime were significantly different from the native,
with RMSDs of 5.6 Å and 4.7 Å, respectively. Prime
packed the loop against the protein, but twisted the loop
to the wrong side. Sybyl placed a helical turn at the
beginning of the loop instead of the end and had steric
clashes with the protein core.

1hfc, residues 142–149

All programs, with the exception of Modeler, did well
at modeling the loop conformation of 1hfc (Fig. 2D). The
best solution given by Prime, also the top-ranked loop,
was within 0.4 Å of the native structure. Prime correctly
predicted a hydrogen bond between the backbone car-
bonyl of Val 144 in the loop and the side chain of Gln 257
in the native protein. The Prime modeled loop correctly
packed against the core of the protein, decreasing the
solvent accessible surface area and burying of the
lipophilic residues of the loop. For this loop, Sybyl

Figure 2. Loop conformations that have the lowest RMSDs with respect to the native structure for the proteins and loop lengths as shown. The color

scheme is as follows: native protein (brown), Prime (dark blue), Modeler (magenta), Sybyl (yellow), and ICM (cyan). (E) Shows some side chains of the

native protein colored by atom, with carbons colored brown, nitrogens blue, and oxygens red. (I) Shows the cysteines of the loop that form a disulfide

bridge in the native structure and the cysteine of the protein core rendered in ball and stick, and sulfurs colored yellow.
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returned a best RMSD within 0.6 Å of the native, and
even positioned the side chains quite well, including
placing Val 144 within hydrogen bonding distance of
Gln 257; however, the vector is not optimal. The best
result from ICM had an RMSD of 1.4 Å. The loop from
ICM was reasonably well positioned with respect to the
native loop, although a steric clash was observed between
the C terminus of the protein and Val 144 in the loop. This
appears to be an artifact of the grid-based algorithm for
steric contacts used in the ICM loop search protocol, and
subsequent minimization should remove the steric inter-
action without perturbing the loop conformation. Modeler
performed very poorly for this loop, giving a best RMSD
of 6.3Å. The loop predicted by Modeler is solvent
exposed, forming almost no contacts with the native
protein. In the native structure, the terminal residues of
this loop form part of a beta-strand. Modeler failed to
reproduce the hydrogen-bonding network required for
these residues to participate in a beta-strand, allowing the
loop to adopt a completely different conformation from
that of the native protein.

1nif, residues 221–228

Loop 1nif (221–228) is a very unusual loop that is a
distorted 310 helix (Fig. 2E). Hydrogen bonds are formed
between backbone atoms of residues Ala 223 and Ala 226
and Thr 228 and His 231 and backbone–side-chain
interaction between Gly225 and Thr 228. Prime produces
a loop with 0.9 Å for the best RMSD that mimics the
backbone interactions quite well, but fails to replicate the
Gly 225/Thr 228 interaction and rotates the threonine side
chain away by ;120°. The loop conformation emphasizes
the value of incorporating a term in the loop scoring
function that favors burying hydrophobic groups. The
best loop generated by Modeler has a best RMSD of 4.6
Å, and fully extended the loop instead of forming the
helical-like structure. The first residue fails to make the
Ala 223/Ala 226 hydrogen bond, as seen in the native
structure, and makes two backbone/side-chain hydrogen
bonds to residues in the protein core that are not seen in
the native structure; additionally, no intra-loop hydrogen
bonds are made that are seen in the native structure. The
best solution from Sybyl has a poor best RMSD of 4.1 Å;
however, the generated loop is purely alpha-helical in
nature. It is interesting that an alpha-helical structure was
found for a loop that in the native protein is a distorted 310

helix, but unfortunately, the lack of a steric term (used in
the Sybyl loop scoring function) greatly reduces the
quality of this loop. There are several instances of close
steric contacts (<1.0 Å) and even one example of a loop
backbone coming into direct contact with a Ca atom of a
neighboring residue. ICM generates a loop with a best
RMSD of 4.6 Å that is similar to Sybyl with respect to
residues 226–228, but significantly different for residues

221–225. Again, steric clashes occur between many of the
loop residues and the protein core. It is clear that for this
example, with steric clashes, a minimization protocol and
rescoring would likely improve the quality of the ranking.

Long loops: 11 residues, 14 loops

As to be expected, the longer loop lengths have signifi-
cantly higher RMSDs, averaging 5.3 Å for the top-ranking
loops and 3.4 Å for the loops with the best RMSD (Fig.
1K). Many solutions have top-ranking RMSDs above 8 Å,
and some that are as high as 12 Å or more depending upon
the specific loop and loop-modeling algorithm (Fig. 1H).
Obviously, due to the high degree of conformational
flexibility in these loops, these results are not surprising.
It is interesting to note that Prime produces the loop with
the closest RMSD to the native structure in seven of the
14 loops, a lower percentage of best RMSDs compared to
the short and medium length loops. This is the worst
showing for Prime; however, Prime still produced more
loops closest to the native loop than the other three
methods, with six loops having an RMSD of <2 Å. Sybyl
has three cases where loops were the best generated of all
four programs. These three loops were further investigated
to determine what proteins the loop segments were derived
from. It was found that even though the proteins contained
<50% sequence identity to the native protein, they likely
belonged to the same structural family of proteins. ICM
also had two loops that scored closest to the native PDB in
comparison to the other programs. This highlights the value
of using a database searching method, which calculates
results very quickly even for the longer loops. When crystal
structures from homologous proteins in the same family are
available, a good-quality homology model may be built
quickly, especially for longer length loops. All programs
had at least some examples where each produced the best
overall RMSD for a given loop; however, the RMSDs are
so large for most of the best solutions (with the exception of
Prime), that these models would not generally be accept-
able for structure-based design.

1a2y, residues 91–101

All of the loop-modeling protocols perform quite well
on this loop, despite the long length, with RMSDs <1.6 Å
(Fig. 2F). The results for this loop suggest that longer
length loops may be predicted with reasonable accuracy
when the loop is in a fairly confined region of the protein.
Sybyl produced a loop with the lowest best RMSD, 1.1 Å,
which validates the use of database search methods when
a common protein fold is being examined, in this case, a
beta sandwich. Prime compares favorably with Sybyl,
generating a loop with a best RMSD of 1.2 Å that places
the side chains similarly to the native crystal structure.
ICM generated a loop with a best RMSD of 1.6 Å, but had
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significant steric contact with neighboring side chains.
Modeler also has a good best RMSD for this loop length,
1.5 Å, but upon closer inspection, the backbone is
positioned close to the backbone of the native crystal,
but rotated 180°. Thus, all of the residues are pointing in
the opposite direction from the native crystal.

1awq, residues 1101–1111

Prime generates the loop with the lowest best RMSD
for 1awq (1.6 Å), which is significantly better than the
loops from ICM (3.8 Å), Modeler (4.8 Å), and Sybyl (6.3
Å) (Fig. 2G). Again, a long loop length is sampled in this
case, but Prime generated a loop conformation that had a
low RMSD compared to the native crystal structure. This
partially buried, partially exposed loop was modeled well
by Prime. The resulting model even contained a series of
hydrogen bonds constraining the loop in a conformation
in a manner similar to the native loop. The loop from ICM
makes hydrogen bonds to a different neighboring loop,
and this draws the loop into the wrong conformation.
Modeler fails to produce loops that interact with neigh-
boring loops; rather, it extends this loop toward solvent
producing an inaccurate model. Sybyl generates a loop
that not only shows a high RMSD for the best loop
modeled, but the modeled loop weaves in and out of the
protein, making significant steric clashes in numerous
places. This is yet another example of the value of includ-
ing a steric term in the loop-modeling scoring function,
which would reject this type of loop conformation.

1dad, residues 42–52

For the loop in 1dad, Modeler, Sybyl, and ICM all
generate loops with low best RMSDs (Fig. 2H). In this
example, Sybyl outperforms the other three loop-modeling
algorithms with a best RMSD of 0.8 Å, reproducing the
hairpin turn of the native loop. Modeler (2.1 Å) and ICM
(1.7 Å) both generate reasonable loops similar in shape to
the native loop. The best RMSD for Prime (5.3 Å) is one of
the higher RMSDs of all Prime loops. In this case, the
modeled loop folds against the protein core, instead of
extending toward the solvent, as it is in the native loop.
Further investigation of the loop revealed that the crystallo-
graphic conformation is induced by contact from a neigh-
boring protein in the unit cell; therefore, modeling of a
single protein may produce incorrect loop conformations.

Disulfide bonds: 1arp, residues 41–50 (10 mer)

Modeler and Prime have the ability to create disulfide
linkages between cysteines when generating loops. As
one would expect, the ability to utilize disulfide con-
straints produced much better loops, as evidenced by the
10-residue loop 1arp (Fig. 1I). Both Modeler and Prime

generated loops with a best RMSD <2.0 Å, and are clearly
anchored by the disulfide linkages between the modeled
loop and the protein core. Without identifying the
disulfide linkages, Modeler and Prime generate signifi-
cantly worse results; the best RMSD for Prime was 4.2 Å,
while the Modeler best was RMSD 5.4 Å. ICM does fairly
well at reproducing the loop conformation with an RMSD
of 2.5 Å, but the cysteine faces away from the partner
disulfide. Sybyl produces an extremely poor best RMSD
(6.5 Å) loop which occupies a significantly different
region of the protein. In both Modeler and Prime, prior
to calculating the loops, the disulfides need to be
specified and the atom typing fixed so this constraint
can be utilized by the loop-sampling algorithms. Sybyl
and ICM both have advanced options, not part of the
standard protocol, that allow the user to define constraints
between cysteines. However, the constraints are utilized
in a post-processing minimization step that was not
considered for purposes of this study.

Crystal contacts

Of the four programs tested, Prime is the only one that is
capable of including crystal contact information during loop
generation. The complete set of 11-residue loops were
retested (Fig. 1J) using the crystal packing option in Prime.
All 14 loops had at least one atom that was within 10 Å of
a neighboring protein. One of the loops (1fus, loop 28–38)
did not yield any solutions. Unfortunately, efforts to
determine the source of this error were unsuccessful. Seven
of the remaining 13 loops sampled improved using crystal
contacts, with 1dad showing the most significant improve-
ment, decreasing the original best RMSD from 5.3 Å to
3.0 Å. The final six loops had higher RMSDs when utilizing
the crystal packing option, but were <1 Å for all but one of
the loops. Even with the additional information regarding
crystal packing, this loop generation fails to deliver a loop
within the 2 Å RMSD cutoff identifying good-quality loops.
Four of the seven loops that had smaller RMSDs using
crystal contacts were considerably small improvements of
#0.4 Å. Since only half of the loops sampled had improved
RMSDs, and not particularly large improvements, this
suggests that crystal packing is not necessary or even
beneficial in most cases. The true value of crystal packing
in Prime is that it allows the solvent-exposed loops to
extend away from the protein core, to interact with a
neighboring protein. Several loops that appear to be solvent
exposed when viewing a single asymmetric unit, are in fact,
interacting with a symmetry related protein. Since the Prime
loop-modeling algorithm was designed to increase steric
contact between the loop and protein core, the addition of
the crystal unit cell information allows Prime to generate
loops that would not be produced without the neighboring
atoms of the symmetry related protein being present.
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No solutions found: 2sil: 176–181 (6 mer), 1ads: 186–192
(7 mer), 2 mnr: 270–276 (7 mer), 1xyz: 813–824 (12 mer)

There were four examples of loops for which Prime was
unable to determine a solution. When investigating these
cases, it was noted that all four loops were buried deep
within the protein. Because Prime builds the loop residues
simultaneously from each end, the program was unable to
find a path that was free of steric clashes. This may be a
result of poor sampling, but could also be due to steric
clashes between the generated loop and the core protein
where a force field-based program would yield very high
energies for such poses.

Ranking loops

As frequently noted, the resultant loops were ranked very
poorly with respect to the rank ordering of the RMSDs
with respect to the native crystal. Figure 1K represents
the average best RMSD from each loop length as well
as the average top-ranking RMSD. This allows for an
assessment of both the average quality of the best RMSD
results as well as the average quality of the scoring
function. For short loops (four to six residues), all
programs generated loops with best RMSDs averaging
<1 Å, with the exception of the Sybyl six-residue loops,
confirming that all four algorithms yield satisfactory
results for use in modeling studies. Although Modeler,
Sybyl, and ICM had low best RMSDs, the methods did
not rank the results well, and show a 1–1.5 Å difference
between the top-ranked and best RMSD loops, while the
results from Prime were much better, with only 0.1 Å
difference between the two RMSDs. For medium-length
loops (seven to nine residues) Prime stands out as the best
method, with RMSDs averaging <2 Å while the other
three methods approach RMSDs of 3 Å. At these lengths,
the best RMSDs deviate from the top-ranked RMSDs for
all methods, but Prime has a smaller difference of ;1 Å
vs. ;1.5 Å for the others. Even for long loops (10–12
residues) Prime was able to produce loops with RMSDs
averaging ;2.5 Å. All methods had similar results for the
10-residue loops, but the 11- and 12-residue loops break
down for Modeler, Sybyl, and ICM with RMSDs ranging
from 3–6 Å. The deviation between top-ranked vs. best
RMSDs remains consistent with the medium-length
loops, showing that the ranking does not correlate with
loop length. The high RMSDs observed in the longer
loops would not be acceptable for use in homology
modeling.

Another way to assess the results is by comparing the
number of times each program selected the loop with the
best RMSD as the top-ranking loop (Fig. 1L). By this
criterion, it is evident that Prime has the best method for
ranking loops, since it scored 30% of the loops properly
compared to 14% for Modeler, 25% for Sybyl, and 18%

for ICM. Prime performed equal to or better than all
methods for all loop lengths except the four-residue loops
and 11-residue loops. This representation does overlook
the fact that Prime often clusters the loop conformations
together closely; therefore, the best RMSD and top-
ranking RMSD may only be 0.1 Å apart. Sybyl performs
slightly worse than Prime when rating the resulting loops,
with an average of 25% scored correctly. The scores in
Sybyl would be greatly improved if appropriate steric
components were added for selection of loop models,
since the scoring is currently assessed simply by RMSD
of the terminal ends of the loop compared to the linkage
trajectory to the protein core. It is striking to note that
despite the lack of an energy-based scoring function,
Sybyl ranked the loops almost as well as Prime for all
loop lengths except the five- and seven-residue loops. The
performance for both Modeler and ICM is less encourag-
ing, universally, averaging 14% and 18% for loops
correctly ranked for each program, respectively. Modeler
samples conformational space relatively well, and gen-
erates structures that are closer to the crystallographic
conformation than ICM, but does not rank the generated
loops well. For loop lengths up to 10 residues, the
methods deliver results that have RMSDs generally <2–
2.5 Å, which would be acceptable levels of resolution for
modeling studies. Unfortunately all methods are unable to
rank the resultant loops with good accuracy; it is clear
that a user must visually inspect all loop modeling results
and not rely on the ability of a modeling algorithm.

Discussion

Since loops near the binding site can influence the manner
of ligand binding, accurate loop modeling can often be an
important prerequisite to structure-based design. Various
examples have already been cited in the introduction.
Therefore, the results of this study are intended to elucidate
the strengths and weaknesses of four loop-modeling
algorithms.

Overall, all four algorithms generated loops that were
within 2 Å of the crystallographic conformation for at
least one loop at each loop length except the 12-residue
loops, where Prime and Sybyl had a few examples of
accurate loops. Prime, however, performed most consis-
tently and produced loops with the lowest RMSD for the
majority of the loops modeled at all lengths. Prime is the
only program that uses force field-based energy terms
that includes electrostatics and sterics to score the loops
with a continuum solvent model, and therefore, appears to
be a superior method of selecting and ranking loops.
However, in the best case (seven-residue loops) Prime is
only capable of ranking the best RMSD loop as the top
loop 50% of the time, and averaging only 30% correct
over all loop lengths. As stated before, this representation
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does overlook the fact that Prime often clusters the loop
conformations together closely; therefore, the best RMSD
and top-ranking RMSD may only be 0.1 Å apart. The
benefit of incorporating electrostatics into the calculation
is evident, seen in several examples where salt bridges
and hydrogen bonds were driving the conformation of the
loop, resulting in loops with very low RMSDs compared
to the loops generated by the other programs. Addition-
ally, the hydrophobic term that Prime uses to model loops
yields loops that tend to be packed against the protein.
This packing is often observed in crystal structures, and
frequently seen in this study. When loops are solvent
exposed, Prime has an option to use crystal packing to
reproduce the extended conformation of the loop. The
crystal packing option, however, shows mixed results in
this study, improving some of the loops, but not others,
and no clear circumstances as to when it should be
utilized.

When examining the best RMSDs, Modeler, Sybyl, and
ICM reported similar results, but the rank ordering of the
loops varied greatly between the programs. The loops
with the best RMSDs from Modeler were generally closer
to the native loop than those from Sybyl or ICM, and it
is clear that conformational space is better sampled by
Modeler than the other two methods. The random posi-
tioning of the starting loop followed by minimization,
molecular dynamics, and simulated annealing result in a
wide range of conformations sampled by Modeler, yield-
ing loops with relatively good best RMSDs compared to
Sybyl or ICM. However, in loops longer than seven
residues, even the best RMSDs are over 2 Å. The energy
function used to score and rank the loop models is the
main weakness of the Modeler program, evident by the
large disparity between the best and top-ranking RMSD.
The use of statistical preferences for nonbonded inter-
actions and dihedrals does not score the resultant loops as
well as using electrostatic interactions, which Prime
successfully uses.

Sybyl and ICM are both database search-based meth-
ods and report similar results, with ICM performing
slightly better than Sybyl, possibly because the database
of protein templates used by ICM was more current and
larger than that used by Sybyl. The results for Sybyl are
erratic, generating very good results for some loop
lengths and very poor results for others. Database search
methods perform well on common loop conformations,
such a beta hairpin turns, and type I turns are useful for
quickly generating models of loops, including long length
loops. If proteins with a reasonable level of sequence
identity and common three-dimensional fold family
members are available, good quality loops can be gen-
erated, as was observed in the 12-residue loops (Fig. 1I).
Sybyl, surprisingly, ranked the resultant loops second best
of the four programs, but only ranking 25% of the loops

correctly. Both Sybyl and ICM do not have scoring
functions based on energy; rather, they rank the loops
based on the RMSD of the spliced loop to the protein
core. The absence of a bump check results in a large
number of loops that have severe steric clashes with
both the protein core side chains as well as backbone
atoms. Incorporating a simple steric term into the loop
modeling and ranking would greatly improve the quality
of the results from both Sybyl and ICM.

Modeler, Sybyl, and ICM could all benefit from a post-
processing set that involves an energy calculation to
determine the rank ordering of the resultant loops,
allowing high energy loops to be rejected. Although
Prime scored the results the best of the four programs,
the top-ranking loops were only predicted correctly 30%
of the time. This underscores the need to improve the
scoring functions used to rank loop models for all loop-
modeling programs in order to assist the user in selecting
the best loop to use in a homology model. Currently, the
user cannot rely solely on the energy or rank order of
the loop from any one method. As a result of this study,
the user is encouraged to visually inspect the loops to
determine which is most reasonable. The following
observations were made regarding what constitutes a
‘‘reasonable’’ loop conformation; most importantly, one
must inspect for steric clashes of both the backbone and
side-chain atoms. Sybyl and ICM generated numerous
structures with unacceptable steric clashes which need to
be eliminated through visual inspection. Second, identify
possible salt bridges and hydrogen bonds that may rigid-
ify or drive the conformation of the loop. Compactness of
the loop to the protein core was often observed in the
native structure. The algorithm used in Prime includes a
term that takes this into account and, as a result, yields
loops more similar to the native crystal than the other
methods. The ability to form disulfides is a key compo-
nent to loop modeling. When opportunity arises to form
disulfides, the conformational flexibility of the loop is
significantly reduced. When a disulfide is not specified
when one exists, the resultant loop will adopt a con-
formation that keeps the cysteines far from one another.
Finally, it is prudent to examine the characteristics of the
residues in the loop. Hydrophobic residues generally pack
against the protein while hydrophilic residues tend to be
solvent exposed. Looking for these types of criteria can
help identify the best loop from the set generated by the
different methods.

Results from this study point out the benefits of ab
initio and database methods for loop modeling. Given the
ever-increasing computational speed available and the
increase in conformational sampling resulting from this,
it is fair to expect that protein models, and the loops
generated by computational methods, should be held to
rigorous standards. This is especially true if they are to be
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used for structure-based drug design where multiple
hypotheses are derived from inspection of the protein
models. These studies provide new ways to impact drug
design. For example, given the expected increase in loop
flexibility with increasing loop length, an approach to
structure-based ligand docking that considers an ensem-
ble of conformations rather than a single conformational
solution for a given loop is more reasonable. Independent
studies of loops in G protein-coupled receptors (Kortagere
et al. 2006; Mehler et al. 2006), as well as a study showing
the relative benefits of ligand docking to an ensemble of
protein structures rather than a single structure (Polgar
and Keserue 2006) also appear to support this finding.
Furthermore, using an ensemble of loop conformations
rather than a single conformation reduces uncertainties that
can arise from inadequacies of the scoring function. Finally,
the loop-modeling data presented herein suggest that the
incorporation of implicit solvent models results in higher
accuracy of ranking and improved selection of loop
structures.
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